スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
101(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 06/06(金)07:16 ID:8zjVGihS(1/3)
>>90
ふっふ、ほっほ
「箱入り無数目」(数学セミナー201511月号の記事)より
<後半>
R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果 R^N →R^N/〜 の切断は非可測になる.
現代数学の形式内では確率は測度論によって解釈される
(引用終り)
・時枝氏自身、選択公理による非可測と、測度論による確率論は、両立しないことを認めている
・あなたの論:「選択公理を仮定すると 云々かんぬんで、パラドックスは何でも証明できる」は
成立しないw ;p)
102: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 06/06(金)07:18 ID:8zjVGihS(2/3)
>>100
死狂幻調教大師S.A.D.@月と六ベンツさん、どうも
スレ主です。今後ともどうかよろしくお願いいたします。
124(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 06/06(金)23:21 ID:8zjVGihS(3/3)
>>118 追加自己レス 訂正再掲と補足
(引用開始)
4)これを、決定番号に当てはめると
いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った
相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った
箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる
Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える
(引用終り)
ここが一番のキモです
1)つまり、箱入り無数目を成り立たせている手法とは
i)可算無限の実数列のシッポ同値類を作る(出題の実数列)
ii)シッポ同値類の代表を一つ選ぶ
iii)出題の実数列と 代表列の比較により 決定番号d(ある番号dから先 この二つの実数列が一致している番号)を得る
iv)いま、何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た
v)このとき、d'+1より大きな番号の箱を開けて、出題の実数列の属する同値類をつきとめて
同値類の代表列を使うことができて、代表列のd'番目の値を得ることができる
決定番号の定義により、代表列のd'番目の値=出題の実数列のd'番目の値であるので
これにて、めでたく 出題の実数列のd'番目の値を的中できる!
2)さて、問題は 上記『何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た』の部分
>>112の3)〜5)に 既に述べたように そのような d'なる値を得ることはできない
∵ 決定番号の集合は、無限集合で その平均値(期待値)は、発散して 非正則分布(>>8)を成すから
3)なので、上記1)〜2)の如く、箱入り無数目を成り立たせている手法が 数学的(原理的)に成り立たない
ゆえに、100列だろうが 100人の数学者だろうが ナンセンスなパズルにすぎない!■
補足
繰り返すが、シッポ同値類とその代表による 上記の数当てが
1列の数列において破綻している以上
2列以上の数列の話は、破綻のゴマカシにすぎない!
つまり、上記1)〜3)において、”d<d' なる d'”は、自然な数学理論としては 不可能
ただし、”d<d' なる d'”が 存在しないわけではない
それは、あたかも ルベーグ測度の零集合の存在で
零集合は、存在するが その測度は0で、従って確率計算も0
存在するが、その確率は0
99/100の確率は与えられない( 強いて言えば 0*99/100=0となるべきもの )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.011s