スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
273: 132人目の素数さん [sage] 2025/07/21(月) 15:47:33.04 ID:60RWf/A5 "可算無限個のサイコロを投げます"より 転載しておく https://rio2016.5ch.net/test/read.cgi/math/1752265419/221 (引用開始) ”>>58 >箱入り無数目は 全事象Ωが発散している Ω={1,2} のどこが発散してるのか言ってみ?” だったろ? この あとでやるよ (引用終り) 1)まず、簡単に箱5つで考えよう それを 数列 s1,s2,s3 ,s4,s5 とする si | i=1〜5 は、コイントスで {0,1}が入る ({1,2}→{0,1}とした) 2)箱入り無数目同様に、しっぽ同値を考える (箱入り無数目は 右ご参照 https://rio2016.5ch.net/test/read.cgi/math/1736907570/1-3) 数列 s'1,s'2,s'3 ,s'4,s'5 で、しっぽ同値だと s'5=s5 だ だから、一つの同値類の場合の数は 2^4 で、全体Ωは 2^5 3)いま、列長さL(L>5)を考える 上記同様 s1,s2,s3 ,s4,s5・・,sL-1,sL s'1,s'2,s'3 ,s'4,s'5・・,s'L-1,s'L で、しっぽ同値だと s'L=sL だ だから、一つの同値類の場合の数は 2^(L-1) で、全体Ωは 2^L 4)箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで 全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N (なお、2^Nは非可算無限だね(下記)) よって、『箱入り無数目は 全事象Ωが発散している』 (参考) https://ja.wikipedia.org/wiki/%E9%9D%9E%E5%8F%AF%E7%AE%97%E9%9B%86%E5%90%88 非可算集合 例 非可算集合の例として最も知られているものは実数全体の集合 R R の濃度をしばしば連続体濃度と呼び c や 2^ℵ0 または ℶ1 (beth-one) で表す http://rio2016.5ch.net/test/read.cgi/math/1736907570/273
274: 132人目の素数さん [sage] 2025/07/21(月) 15:50:06.63 ID:60RWf/A5 https://rio2016.5ch.net/test/read.cgi/math/1752265419/236 >>221 <決定番号の確率について> 1)決定番号の確率について考えよう まず、5列 s1,s2,s3 ,s4,s5 si | i=1〜5 は、コイントスで {0,1}が入る しっぽ同値 数列 s'1,s'2,s'3 ,s'4,s'5 で、しっぽ同値だと s'5=s5 だ だから、一つの同値類の場合の数は 2^4 で、全体Ωは 2^5 一つの同値類 2^4 で 決定番号1 とは、全ての列一致で つまり si=s'i | i=1〜4 (s5=s'5 は仮定されているとして) その確率 1/2^4 同様に 決定番号4以下 とは S4=s'4でさえ あれば良いので 1/2 よって、残り決定番号5の場合が、確率 1-1/2=1/2 2)列長さL(L>5)で、一つの同値類内で sL=s'L は満たされているとして 決定番号L-1以下 とは sL-1=s'L-1であれば良いので 1/2 よって、決定番号Lの場合が、確率 1-1/2=1/2 3)ここで、L→∞ を考えると 最後の箱は 無限の彼方に飛び去る (全体Ωは 2^∞ で発散する) つまり、無限の長い列において 有限決定番号dとは dから後の無限長のしっぽが全て一致している 即ち 1/2^∞ =0 の存在 (存在するが 測度0 つまり零集合の元) 4)いま、これを一般化して 2→m枚(1〜m)のカードを シャッフルして入れるとする 上記同様に、有限長L で、一つの同値類の場合の数は m^(L-1) で、全体Ωは m^L L→∞ で、無限の長い列において 有限決定番号dとは dから後の無限長のしっぽが全て一致している 即ち 1/m^∞ =0 の存在 (確率0の存在。存在するが 測度0 つまり零集合の元) 5)いよいよ、箱入り無数目と同じく 箱にランダムな実数を入れる 区間[0,1]の一様分布でr∈[0,1]を取る 有限長L で、この場合 しっぽ同値では 決定番号d=Lが全て L-1番目を含み それ以降の箱の一致確率は0 つまり、決定番号d<L が起きる確率0(∵ si=s'i となる確率0) L→∞ でも、上記と同様で 有限決定番号dは 確率0の存在。存在するが 測度0 つまり零集合の元 6)ダメ押しで、付番に拡大実数で+∞を導入しよう (はさみうちの原理) この場合において しっぽ同値で 決定番号d=+∞ がとれる 箱入り無数目と同じく 箱にランダムな実数を入れる 区間[0,1]の一様分布実数を入れる。決定番号d=+∞で終わり 決定番号dが有限の確率0(上記5)項と同じ) はさみうちの原理により、有限長さLを大きくした極限の場合と 拡大実数で+∞を導入した場合において はさまれる 箱入り無数目において 有限決定番号dは 確率0の存在。存在するが 測度0 つまり零集合の元!■ 箱入り無数目は、確率0で 99/100を導き 結局その確率は 0*99/100=0 (参考) https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論 可測集合 S が μ(S) = 0 であるとき零集合 (null set) という https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0 拡大実数 通常の実数に正の無限大 +∞ と負の無限大 −∞ の2つを加えた体系 https://ja.wikipedia.org/wiki/%E3%81%AF%E3%81%95%E3%81%BF%E3%81%86%E3%81%A1%E3%81%AE%E5%8E%9F%E7%90%86 はさみうちの原理 極限に関する定理の一つ http://rio2016.5ch.net/test/read.cgi/math/1736907570/274
275: 132人目の素数さん [sage] 2025/07/21(月) 15:50:37.46 ID:60RWf/A5 https://rio2016.5ch.net/test/read.cgi/math/1752265419/247 >>236 まとめ 1)まず、列長さ有限Lのしっぽ同値類を考えると ・箱に一様分布の1〜mの整数を入れたとき 全体Ω=m^L、一つの同値類の場合の数 m^(L-1) 一つの同値類中の 決定番号dが1からL-1までが 全体の1/m。決定番号d=Lが、全体の1-1/m ・箱に一様分布の区間[0,1]の実数を入れたとき 全体Ω=[0,1]^L、一つの同値類の場合の数 [0,1]^(L-1) 一つの同値類中の 決定番号dが1からL-1までが 全体比で0。決定番号d=Lが、全体比で1 2)次に、列長さ可算無限でしっぽ同値類を考えると ・箱に一様分布の1〜mの整数を入れたとき 全体Ω=m^∞、一つの同値類の場合の数 m^∞ 一つの同値類中の 決定番号dが有限は、零集合をなす。決定番号d=∞が、全体Ωの殆どすべて。 ・箱に一様分布の区間[0,1]の実数を入れたとき 全体Ω=[0,1]^∞、一つの同値類の場合の数 [0,1]^∞ 一つの同値類中の 決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて 3)さて、これを踏まえて 箱入り無数目の決定番号による確率計算を検討しよう 箱入り無数目では、列を100列作って 99列を開けて 未開の1列の決定番号と比較するという (https://rio2016.5ch.net/test/read.cgi/math/1736907570/3 ご参照) いまこれを、抽象化すると 箱を開けた列の決定番号の最大値Dと 未開列のまだ不明な決定番号dkとの比較を考えることになる ところが、このdkは 上記2)項の通り ∞に発散している量だから もし、最大値Dが有限ならば、 『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない よって、箱入り無数目の決定番号を使う数当て手法は、機能しない!■ 以上 http://rio2016.5ch.net/test/read.cgi/math/1736907570/275
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.011s