スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) http://rio2016.5ch.net/test/read.cgi/math/1736907570/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
275: 132人目の素数さん [sage] 2025/07/21(月) 15:50:37.46 ID:60RWf/A5 https://rio2016.5ch.net/test/read.cgi/math/1752265419/247 >>236 まとめ 1)まず、列長さ有限Lのしっぽ同値類を考えると ・箱に一様分布の1〜mの整数を入れたとき 全体Ω=m^L、一つの同値類の場合の数 m^(L-1) 一つの同値類中の 決定番号dが1からL-1までが 全体の1/m。決定番号d=Lが、全体の1-1/m ・箱に一様分布の区間[0,1]の実数を入れたとき 全体Ω=[0,1]^L、一つの同値類の場合の数 [0,1]^(L-1) 一つの同値類中の 決定番号dが1からL-1までが 全体比で0。決定番号d=Lが、全体比で1 2)次に、列長さ可算無限でしっぽ同値類を考えると ・箱に一様分布の1〜mの整数を入れたとき 全体Ω=m^∞、一つの同値類の場合の数 m^∞ 一つの同値類中の 決定番号dが有限は、零集合をなす。決定番号d=∞が、全体Ωの殆どすべて。 ・箱に一様分布の区間[0,1]の実数を入れたとき 全体Ω=[0,1]^∞、一つの同値類の場合の数 [0,1]^∞ 一つの同値類中の 決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて 3)さて、これを踏まえて 箱入り無数目の決定番号による確率計算を検討しよう 箱入り無数目では、列を100列作って 99列を開けて 未開の1列の決定番号と比較するという (https://rio2016.5ch.net/test/read.cgi/math/1736907570/3 ご参照) いまこれを、抽象化すると 箱を開けた列の決定番号の最大値Dと 未開列のまだ不明な決定番号dkとの比較を考えることになる ところが、このdkは 上記2)項の通り ∞に発散している量だから もし、最大値Dが有限ならば、 『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない よって、箱入り無数目の決定番号を使う数当て手法は、機能しない!■ 以上 http://rio2016.5ch.net/test/read.cgi/math/1736907570/275
276: 132人目の素数さん [] 2025/07/21(月) 23:26:57.82 ID:mqIGDCdy >>273 >4)箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで > 全体Ωは 2^N 箱入り無数目は2列に並べ替える場合Ω={1,2} なぜなら箱入り無数目の確率事象は列選択だから。 これは著者による定義だから君が勝手に変更したらダメ。 何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/276
277: 132人目の素数さん [] 2025/07/21(月) 23:29:09.40 ID:mqIGDCdy >>274 >1)決定番号の確率について考えよう 無駄。 箱入り無数目の確率事象は列選択だから。 これは著者による定義だから君が勝手に変更したらダメ。 何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/277
278: 132人目の素数さん [] 2025/07/21(月) 23:42:55.49 ID:mqIGDCdy >>275 >1)まず、列長さ有限Lのしっぽ同値類を考えると 無駄。 列の長さは可算無限だから。 >一つの同値類中の決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて 決定番号は自然数と定義されている。 よっていかなる自然数も有限値。つまり決定番号=有限値がすべて。 >このdkは 上記2)項の通り ∞に発散している量 決定番号は自然数と定義されている。 100列の決定番号は100個の自然数であり発散していない。 >『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない 100列の決定番号は100個の自然数であり、自然数の全順序性から単独最大決定番号は1個以下(重複がある場合0個)。 よって100列のいずれかをランダム選択すれば単独最大決定番号を選ぶ確率はたかだか1/100が言える。 何度言っても言葉が通じないね 言語障害? 病院行きなよ ここにいても治らないよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/278
279: 132人目の素数さん [] 2025/07/21(月) 23:45:38.92 ID:mqIGDCdy >決定番号は自然数と定義されている。 >よっていかなる自然数も有限値。つまり決定番号=有限値がすべて。 決定番号は自然数と定義されている。 いかなる自然数も有限値。 よっていかなる決定番号も有限値。つまり決定番号=有限値がすべて。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/279
280: 132人目の素数さん [] 2025/07/21(月) 23:52:54.15 ID:mqIGDCdy この通り、何度言っても言葉が通じず、ひたすら独善持論を繰り返してくる。 だから10年経っても終息しない。正常者なら1日で終息する。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/280
281: 132人目の素数さん [] 2025/07/22(火) 00:04:30.19 ID:4jFdIsuX そしてなぜかsage投稿 独善持論を見つからないようにこそっと投稿するためか 精神が異常である http://rio2016.5ch.net/test/read.cgi/math/1736907570/281
282: 死狂幻調教大師S.A.D.@月と六ベンツ [] 2025/07/22(火) 00:17:23.06 ID:ZnBKkxgU プーさんはいっしょに寝たい男NO1の無職か。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/282
283: 死狂幻調教大師S.A.D.@月と六ベンツ [] 2025/07/22(火) 00:18:57.75 ID:ZnBKkxgU プー朕は熊の皇帝か。当たり前に戦争強いな。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/283
284: 死狂幻調教大師S.A.D.@月と六ベンツ [] 2025/07/22(火) 00:20:25.29 ID:ZnBKkxgU 独我論と独善論は紙一重かも。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/284
285: 死狂幻調教大師S.A.D.@月と六ベンツ [] 2025/07/22(火) 00:21:12.14 ID:ZnBKkxgU 孤独にはリスクがあるというか。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/285
286: 死狂幻調教大師S.A.D.@月と六ベンツ [] 2025/07/22(火) 00:22:30.89 ID:ZnBKkxgU 自分の世界で己を高く見積もるのはかなり無謀。 http://rio2016.5ch.net/test/read.cgi/math/1736907570/286
287: 132人目の素数さん [sage] 2025/07/22(火) 07:53:33.42 ID:dtV915iA >>273 https://rio2016.5ch.net/test/read.cgi/math/1752265419/254 >箱入り無数目は 全事象Ωが発散している |Ω={1,2} のどこが発散してるのか言ってみ? >箱入り無数目は、列長さが可算無限で自然数の集合Nと同じで >全体Ωは 2^N、一つの同値類の場合の数も2^(N-1)=2^N >(なお、2^Nは非可算無限だね) >よって、『箱入り無数目は 全事象Ωが発散している』 はい 間違い はい ●違い |Ω={1,2}は2列のいずれかを選択することが試行 2は箱の中身の種類ではなく、列の数 残念でした http://rio2016.5ch.net/test/read.cgi/math/1736907570/287
288: 132人目の素数さん [sage] 2025/07/22(火) 08:10:26.38 ID:SZi+F/1k >>274 https://rio2016.5ch.net/test/read.cgi/math/1752265419/255 >L→∞ を考えると 最後の箱は 無限の彼方に飛び去る >(全体Ωは 2^∞ で発散する) >つまり、無限の長い列において 有限決定番号dとは >dから後の無限長のしっぽが全て一致している >即ち 1/2^∞ =0 の存在 >… >つまり、決定番号d<L が起きる確率0(∵ si=s'i となる確率0) はい 間違い はい ●違い 大学で測度を習ったことない人が必ずやらかす初歩的誤り 任意のd∈Nについて、決定番号dとなる確率は0ではなく非可測 ただし、このことは箱入り無数目では一切用いない なぜなら箱の中身は定数であって、試行によって変わる変数ではないから 試行で変わるのは、回答者が選択する列だけ 残念でした http://rio2016.5ch.net/test/read.cgi/math/1736907570/288
289: 132人目の素数さん [sage] 2025/07/22(火) 08:17:20.73 ID:SZi+F/1k >>275 https://rio2016.5ch.net/test/read.cgi/math/1752265419/256 >列長さ可算無限でしっぽ同値類を考えると・・・ >一つの同値類中の、「決定番号dが有限」は、零集合をなす。 はい 間違い はい ●違い 一つの同値類中の、「決定番号dが有限」は、同値類全体をなす。 >決定番号d=∞が、全体Ωの殆どすべて。 はい 間違い はい ●違い 決定番号dは自然数 したがって∞となることはあり得ない。 残念でした http://rio2016.5ch.net/test/read.cgi/math/1736907570/289
290: 132人目の素数さん [sage] 2025/07/22(火) 08:19:23.80 ID:SZi+F/1k このスレ終了 指導を受けたい方は以下のスレに移動せよ 可算無限個のサイコロを投げます https://rio2016.5ch.net/test/read.cgi/math/1752265419/ http://rio2016.5ch.net/test/read.cgi/math/1736907570/290
291: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/23(火) 07:27:35.53 ID:odPafkyJ 転載 https://rio2016.5ch.net/test/read.cgi/math/1736907570/323-324 <純粋・応用数学・数学隣接分野(含むガロア理論)21> 2025/09/22(月) >実数列の集合 R^Nを考える. >s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 →>sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版). さて 実数列の集合 R^Nを Formal power series(=形式的冪級数)と見る視点は 下記の en.wikipedia でも採用されている 記号を下記に倣い 実Rを環とみて R[[x]]を形式的冪級数環、R[x]を多項式環とする 時枝さんの同値類は 商 R[[x]]/R[x] に他ならない 形式的冪級数 F1(x)∈R[[x]] 多項式f(x)∈R[x] において F1(x)と F(x)=F1(x)+f(x)とは、同じ同値類に属することは 明らか つまり F1(x)を同値類の代表とすると 同値類は 代表F1(x)+多項式f(x)という構造を取る : この場合 f(x)の次数がn(つまりn次の係数an≠0 で an+1以降すべて0) 時枝のしっぽ同値の決定番号d(ある番号dから先のしっぽが一致する)は、この場合d=n+1となる いま、下記 都築暢夫 多項式環F[x](今の場合R[x])は、線形空間として(可算)無限次元だったことを思い出そう 無限次元線形空間から、作為をもって 有限次元の多項式を要素として 多項式を 選択することは可能だが しかし、ランダムに 無限次元線形空間から 任意の要素を選べばどうなるか? その答えは、無限次元線形空間とランダム性とは 馴染まないってことだね (直観的には 無限次元空間だから 無限次元の要素であるべきだが 多項式でそれは成り立たないので 矛盾) つまり、下記の非正則事前分布と同じで、非正則分布を成すので コルモゴロフによる公理系 P(Ω)=1 (全事象Ωに1を与える)を満たすことが出来ない(ランダム性は考えられない)■ これが、箱入り無数目トリックです 再度纏めると、確率論から外れる典型例が二つある 一つは ご存知非可測集合の場合で、もう一つが 全事象Ωが(大きすぎて)発散して 確率1を与えることができない場合 (後者は、下記 AVILEN Inc. 2020に記されている通りだが、実務ではよく知られていることだが、純粋数学者で知る人は少ない) (参考) https://en.wikipedia.org/wiki/Formal_power_series Formal power series The formal power series over a ring R form a ring, commonly denoted by R[[x]]. (It can be seen as the (x)-adic completion of the polynomial ring R[x], in the same way as the p-adic integers are the p-adic completion of the ring of the integers.) The ring of formal power series Definition of the formal power series ring Ring structure Topological structure つづく http://rio2016.5ch.net/test/read.cgi/math/1736907570/291
292: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/23(火) 07:29:56.36 ID:odPafkyJ つづき https://rio2016.5ch.net/test/read.cgi/math/1736907570/323-324 <純粋・応用数学・数学隣接分野(含むガロア理論)21> つづき https://ja.wikipedia.org/wiki/%E5%BD%A2%E5%BC%8F%E7%9A%84%E5%86%AA%E7%B4%9A%E6%95%B0 形式的冪級数 https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 多項式環 https://www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学I (第2回)都築暢夫 P3 例3.2.多項式環F[x]. 線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である。 証明 略す(原文ご参照) https://ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc. 2020 2020/04/14 非正則事前分布とは?〜完全なる無情報事前分布〜 ライター:古澤嘉啓 目次 1 非正則な分布とは?一様分布との比較 2 非正則分布は確率分布ではない!? 3 非正則事前分布は完全なる無情報事前分布 4 まとめ 積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。 https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E3%81%AE%E5%85%AC%E7%90%86 確率の公理 コルモゴロフによる公理系 4. P(Ω)=1. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1736907570/292
293: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/23(火) 07:33:06.03 ID:odPafkyJ 転載 https://rio2016.5ch.net/test/read.cgi/math/1736907570/327 <純粋・応用数学・数学隣接分野(含むガロア理論)21> 補足 (引用開始) https://www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-21.pdf 代数学I (第2回)都築暢夫 P3 例3.2.多項式環F[x]. 線形空間F[x]は任意の自然数より大きい次元の部分空間を持つから無限次元である。 証明 略す(原文ご参照) (引用終り) ここに P2 『3. 基底一次独立(93 ページ)、基底(98ページ)と次元(100-101 ページ) の定義は教科書を見よ』 などと出てくるが これ 親玉のサイトが見つかった http://www.math.sci.hiroshima-u.ac.jp/algebra/member/tsuzuki-j.html 広島大学理学部数学科 代数数理講座 都築暢夫 2006年度 代数学1:講義ノート 第1回(4/14), 第2回(4/21), 第3回(4/28), 第4回(5/12), 第5回(5/19), 第6回(6/2), 第7回(6/9), 第8回(6/16), 第9回(7/7), https://www.math.sci.hiroshima-u.ac.jp/algebra/member/files/tsuzuki/04-14.pdf 代数学I (第1回)都築暢夫 4 月14 日(金) P1 教科書: 硲野敏博・加藤芳文著「理工系の基礎線形代数学」(学術図書出版) だね <アマゾン> 理工系の基礎線形代数学 単行本 – 1994/1/1 硲野 敏博 (著), 加藤 芳文 (著) 学術図書出版社 カスタマーレビュー 星5つ中3.9つ まだカスタマーレビューはありません http://rio2016.5ch.net/test/read.cgi/math/1736907570/293
294: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2025/09/23(火) 07:52:10.91 ID:odPafkyJ 転載 https://rio2016.5ch.net/test/read.cgi/math/1736907570/328 <純粋・応用数学・数学隣接分野(含むガロア理論)21> 補足 (引用開始) https://rio2016.5ch.net/test/read.cgi/math/1736907570/ 数学セミナー201511月号「箱入り無数目」 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401-406 純粋・応用数学(含むガロア理論)8 より 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 (引用終り) コルモゴロフの測度論による 確率計算では もし 区間[0,1]の実数rを 一つの箱に入れて それを 箱を閉じたまま 当てるときの確率は 0 もし 区間[0,1]の実数rを n個の箱に入れて それを 箱を閉じたまま 当てるときの確率は 0 (一つだけ閉じた箱を残し 他を開けて n-1個の箱の数を見ても iid(独立同分布)なら 確率は 0) n+1個の箱でも同じ 数学的帰納法により、任意nについて 未開の箱の的中確率0 nを無限個に拡張した問題を考えたら? 一つだけ閉じた箱を残して 他を開けると 確率99/100 になる? デタラメ無数目 ですよ http://rio2016.5ch.net/test/read.cgi/math/1736907570/294
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 46 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.016s