雑談はここに書け!【67】 (459レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
299
(8): 132人目の素数さん [] 09/16(火)10:44 ID:tjOKtzTb(1)
示せた人は?
319
(3): 132人目の素数さん [] 09/18(木)21:55 ID:iuntxIEF(1)
>>316
超越性は?
380
(3): 132人目の素数さん [sage] 09/25(木)17:24 ID:ABGVOhvU(1/7)
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの π=2Σ _{k^-0,1,…,+∞}(((2k−1)!!)/((2k+1)((2k)!!)) なる
有理級数表示に注意すれば、無理数πに収束する単調増加な有理数列は存在する
無理数πに収束する単調増加な有理数列を {b_n} ∀b_n>1 とする
正の整数nを任意に取れば、nに対して定義される
実数列 {b_n} の第n項 b_n 、第n+1項 b_{n+1}は両方共に有理数だから、
nに対して b_{n+1} の b_n 乗列 c(n) が定義されて c(n)=(b_{n+1})^{b_n} とおくことが可能である
よって、実数列 {b_{n+1}^{b_n}} は π^π に収束する単調増加な実代数的数の列である
正の整数nを任意に取る。このとき、b_{n+1}>b_n>1 であるから 1>1/(b_n)>1/(b_{n+1})>0 から
1>1/((b_{n+1}))^{b_n})>1/(b_{n+1}) であって b_{n+1}>(b_{n+1})^{b_n} である
正の整数nは任意であるから、n→+∞ のとき b_{n+1}→π かつ n→+∞ のとき b_n→π から π≧π^π を得る
しかし、π≧π^π なることは π^π>π なることに矛盾する
この矛盾は、π^π を代数的数と仮定したことから生じたから、
背理法が適用出来て、背理法を適用すれば、π^π は超越数である

同様に考えて一般化すれば、a、bを a>1、b>1 なる無理数とする
このとき、実数aに収束する単調増加な有理数列 {a_n} ∀a_n>1
と 実数bに収束する単調増加な有理数列 {b_n} ∀b_n>1 が
両方共に存在するならば、a^a、b^b、a^b、b^a はすべて超越数である

故に、a=π、b=e とすれば、π>e>1 であって、π^π、e^e、e^π、π^e はすべて超越数である
401
(3): 132人目の素数さん [sage] 09/28(日)17:47 ID:fvkQNaSZ(1/13)
π^π を代数的数と仮定する
π>1 から π^π は正の実数だから、π^π に対して
或る実代数的数aが存在して π^π=a であって a>π>1>0 であるから π=a^{1/π} である
π^π=a なることに注意して、確かに a>1 なる実数aに対して
定義される実変数xの指数関数 f(x)=a^x を考えれば a>π だから π=a^{1/π}>π^{1/π} である
πは無理数であって、πの
π=4Σ _{k=0,1,…,+∞}(((‐1)^k)/(2k+1))
 =4−Σ _{k=1,2,…,+∞}(2/((2k+1)(2k+3)))
なる有理級数による表示に注意すれば、πに対して、
或る M(π)>1 なる有理数 M(π) が存在して、
M(π) を M(π)=4 とすれば、無理数πに収束する各項が正なる
単調減少な有理数列 {b_n} ∀b_n<M(π) は存在する
402
(4): 132人目の素数さん [sage] 09/28(日)17:49 ID:fvkQNaSZ(2/13)
π<a<M(π)=4 なる有理数aを任意に取る
有理数列 {b_n} ∀b_n<M(π)=4 は無理数πに収束し
各項が正なる単調減少列であるから、π<a<M(π)=4 なる
有理数aに対して或る正の整数 N(a) が存在して、
有理数列 {b_n} ∀b_n<N(a) の第n項について n≧N(a) のとき π<b_n<a である
正の整数nを任意に取れば、nに対して定義される
実数列 {b_n} の第n項 b_n 、第n+1項 b_{n+1}は両方共に有理数だから、
nに対して b_{n+1} の b_n 乗列 c(n) が定義されて c(n)=(b_{n+1})^{b_n} とおくことが可能である
有理数列 {b_n} ∀b_n<M(π)=4 はπに収束し各項が正なる単調減少列だから、
実数列 {b_{n+1}^{b_n}} は π^π に収束する単調増加な実代数的数の列である
有理数aは π<a<M(π)=4 を満たすから、m≧N(a) なる正の整数mを任意に取れば、
有理数列 {b_n} ∀b_n<M(π) の第m項 b_m、第(m+1)項 b_{m+1} について
π<b_{m+1}<b_m<a であって、π>1 から確かに (b_{m+1})^{b_m}>1 である
よって、m≧N(a) のとき、1/a<1/(b_{m+1})<1/((b_{m+1})^{b_m})<1 であって、(b_{m+1})^{b_m}<a である
π<a<M(π)=4 なる有理数aは任意であるから、a→π とすれば、(b_{m+1})^{b_m}≦π である
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.018s