雑談はここに書け!【67】 (510レス)
雑談はここに書け!【67】 http://rio2016.5ch.net/test/read.cgi/math/1736754850/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
314: 132人目の素数さん [sage] 2025/09/17(水) 13:19:51.29 ID:p3xZkeay >>299 任意の n≧2 なる整数nに対して n!+1<2(n!)<(n+1)! である ことを使って、Aを上から評価すれば済む Σ _{k=0,1,…,+∞}(1/(k!+1)) が有理数であると仮定する Σ _{k=0,1,…,+∞}(1/(k!+1)) =1+ _{k=2,3,…,+∞}(1/(k!+1)) =1+Σ _{k=2,3,…,+∞}(1/k!) <1+Σ _{k=1,2,…,+∞}((1/2)^k) <1+1=2 であって、Σ _{k=0,1,…,+∞}(1/(k!+1))>1 であるから、 仮定から、或る互いに素な2つの正の整数p,qが存在してpは p≧2 を満たし Σ _{k=
0,1,…,+∞}(1/(k!+1))=q/p である よって、(p!+1)!Σ _{k=0,1,…,+∞}(1/(k!+1)) は正の整数である 同様に、(p!+1)!Σ _{k=0,1,…,p}(1/(k!+1)) は正の整数である。故に、 A=(p!+1)!Σ _{k=0,1,…,+∞}(1/(k!+1))−(p!+1)!Σ _{k=0,1,…,p}(1/(k!+1)) とおけば、Aは正の整数である。任意の n≧2 なる整数nに対して n!+1<2(n!)<(n+1)! であることに注意して、Aを上から評価すれば A=(p!+1)!Σ _{k=p+1,p+2,…,+∞}(1/(k!+1)) =p!×(p!+1)Σ _{k=p+1,p+2,…,+∞}(1/(k!+1)) <p!×(p!+1)Σ _{k=p,p+1,…,+∞}(1/(k!
+1)) =p!Σ _{k=0,1,…,+∞}(1/((k+p)!+1)) =(p!)/(p!+1)+(p!)Σ _{k=1,2,…,+∞}(1/((k+p)!+1)) <(p!)/(p!+1)+(p!)Σ _{k=1,2,…,+∞}(1/((p+1)!+1)^k) =(p!)/(p!+1)+(p!)/((p+1)!+1)×1/(1−(1/((p+1)!+1))) =(p!)/(p!+1)+(p!)/(p+1)!=(2(p!))/(p+1)! <1 である。よって、Aは正の整数ではない しかし、これはAが正の整数であることに反し、矛盾が生じる 故に、背理法により、Σ _{k=0,1,…,+∞}(1/(k!+1)) は無理数である http://rio2016.5ch.net/test/read.cgi/math/1736754850/314
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 196 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.016s