数学基礎論・数理論理学 その19 (605レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
137
(1): 132人目の素数さん [] 2024/04/18(木)09:58 ID:5l0vuf/E(1/4)
>>136
>クラスで付番されたクラスの”組”とか考えてもいいの?

良いと思うが
素人なので、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG) におけるクラスの扱いをコピーしておきますね

(参考)
https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%B3%E3%83%BB%E3%83%8E%E3%82%A4%E3%83%9E%E3%83%B3%EF%BC%9D%E3%83%99%E3%83%AB%E3%83%8A%E3%82%A4%E3%82%B9%EF%BC%9D%E3%82%B2%E3%83%BC%E3%83%87%E3%83%AB%E9%9B%86%E5%90%88%E8%AB%96
フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG) とはツェルメロ=フレンケル集合論+選択公理 (ZFC)の保存拡大である公理的集合論である。NBGでは、量化子の範囲を集合に限定した論理式によって定義される集合の集まりとして、クラスの概念を導入する。NBGは、すべての集合というクラスやすべての順序数というクラスといった、集合よりも大きいクラスを定義できる。モース=ケリー集合論 (MK) は量化子の範囲がクラスである論理式によるクラスの定義を許容する。NBGは有限公理化できる一方、ZFCやMKではできない。

NBGのキーとなる定理はクラスの存在定理である。クラスの存在定理は、量化子の範囲を集合に限定した論理式それぞれに対して、論理式を満たす集合からなるクラスの存在を述べる。クラスは、クラスの論理式を一つずつ構築することで構成される。すべての集合論的な論理式は2種類の原子論理式(所属関係と等式)と有限個の論理記号から構築されるため、論理式を満足するクラスを構築するには有限個の公理があればよい。NBGが有限公理化できるのは、こうした理由による。クラスは他の概念の構築にも用いられ、集合論的パラドックスへの対処や、ZFCの選択公理より強い大域選択公理(英語版)の説明に用いられる。

ジョン・フォン・ノイマンは1925年に集合論にクラスを導入した。彼の理論の原始概念(英語版)は関数と引数であった。これらの概念を用いて、フォン・ノイマンはクラスと集合を定義した。[1] パウル・ベルナイスはクラスと集合を原始概念とすることで、フォン・ノイマンの理論を再定式化した。[2] クルト・ゲーデルは、選択公理の相対的無矛盾性の証明と一般連続体仮説を用いてベルナイスの理論を単純化した。[3]

集合論におけるクラス
クラスの使用例

NBG, ZFC, MK
NBG は論理的に ZFC と等価ではない。なぜなら、NBG の言葉は表現的であるからである。NBG ではクラスに関して表現できる一方、ZFC ではできない。しかし集合に関しては、 NBG も ZFC で同じ内容の表現を含意する。したがって、NBG は ZFC の保存拡大である。 NBG は ZFC が含意しない定理を含意するが、 NBG は保存拡大であるため、これらの定理は真のクラスに関するものでなければならない。例えば、大域選択公理は 真のクラス V は整列可能であり、どの真のクラスも V と一対一対応することを含意するが、これは NBG の定理である。[注釈 27]

保存拡大の帰結の一つは、 ZFC と NBG が無矛盾性同値であることである。 この証明には爆発原理(矛盾からは、何でも証明可能である)を用いる。

https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory
Von Neumann–Bernays–Gödel set theory
139
(1): 132人目の素数さん [] 2024/04/18(木)12:09 ID:5l0vuf/E(2/4)
>>138
あんたは数学科で落ちコボレさんか?

>クラスで付番されたクラスの”組”とか考えてもいいの?

1)>>137の通りだが、補足しておくと、なんでクラスを制限するのか?
2)それは、下記ラッセルのパラドックスの関連していて、「全ての集合の集まり」はクラスであって
 無制限にクラスを集合とすると、パラドックスになる
3)ZFCは、クラスを認めないので、パラドックスは回避できる
4)フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG)では、クラスは制御されて矛盾が出ないようになっている(だから、クラスの付番はあり)
5)じゃあ、NBGの方が良いんじゃね? と思うだろうが、基礎論屋さんはZFCの方がシンプルで良いと思うらしい(渕野先生とか)
6)なお、圏論が流行りで、基礎論以外の人は クラスは使いたいみたいだよ

https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%83%E3%82%BB%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
ラッセルのパラドックスとは、素朴集合論において、自身を要素として持たない集合全体からなる集合の存在を認めると矛盾が導かれるというパラドックス。バートランド・ラッセルからゴットロープ・フレーゲへの1902年6月16日付けの書簡においてフレーゲの『算術の基本法則』における矛盾を指摘する記述に現れ、1903年出版のフレーゲの『算術の基本法則』第II巻の後書きに収録された[2]。なお、ラッセルに先立ってツェルメロも同じパラドックスを発見しており、ヒルベルトやフッサールなどゲッティンゲン大学の同僚に伝えた記録が残っている
ラッセルの型理論(階型理論)の目的のひとつは、このパラドックスを解消することにあった
概要
「それ自身を要素として含まない集合」を「M集合」とし、「すべてのM集合を成分とする集合R」を作ってみる
そうすると、「任意の集合 X」に関しては、「 Xは Rに含まれる」←→「 Xは Xに含まれない」という定式が成り立つ
そして特に X= Rとすれば、「 Rは Rに含まれる」←→「 Rは Rに含まれない」となり、パラドックスが明示される
矛盾の解消
1.公理的集合論による解消

https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%B9_(%E9%9B%86%E5%90%88%E8%AB%96)
クラス (集合論)
集合論及びその応用としての数学におけるクラスまたは類(class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている

(どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである
140
(1): 132人目の素数さん [] 2024/04/18(木)13:08 ID:5l0vuf/E(3/4)
追加引用しておきます
「圏 (数学)」をかじらないと、集合とクラスの関係は分かりにくいでしょうね
(圏 (数学)が、集合の範囲におさまらない(すなわちクラスを扱う)とき、大きい (large) と言う。類=クラス)

https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%B9_(%E9%9B%86%E5%90%88%E8%AB%96)
クラス (集合論)


与えられた型の代数的対象全ての集まりは、たいてい真のクラスをなす。例えば、全ての群からなるクラス、全てのベクトル空間からなるクラス、など。圏論では、対象の集まりが真クラスをなすもの(または射の集まりが真クラスをなすもの)を大きい圏という。

超現実数 (en:Surreal number) 全体は、体の公理を満たす対象による真クラスである。

集合論では、集合の集まりの多くは真クラスになってしまう。例えば、全ての集合からなるクラス、全ての順序数からなるクラス、全ての基数からなるクラスなど。

クラスが真クラスであることを証明する方法に、全ての順序数によるクラスとの間に全単射を与えるというものがある。この方法は、例えば自由完備束が存在しないことの証明などに使われる。

https://ja.wikipedia.org/wiki/%E5%9C%8F_(%E6%95%B0%E5%AD%A6)
圏 (数学)

圏の大きさ
圏 C が小さい (small) とは、対象の類 ob(C) および射の類 hom(C) がともに集合となる(つまり真の類でない)ときに言い、さもなくば大きい (large) と言う。射の類が集合とならずとも、任意の二対象 a, b ∈ ob(C) をとるごとに、射の類 hom(a, b) が集合となるならば(hom(a, b) を射集合、ホム集合などと呼び)、その圏は局所的に小さい (locally small) と言う[3]。集合の圏など数学における重要な圏の多くは、小さくないとしても、少なくとも局所的に小さい。
文献によっては、局所的に小さい圏のみを扱い、それを単に圏と呼ぶ場合もある[4][5]。
141: 132人目の素数さん [] 2024/04/18(木)17:05 ID:5l0vuf/E(4/4)
>>139 補足
>5)じゃあ、NBGの方が良いんじゃね? と思うだろうが、基礎論屋さんはZFCの方がシンプルで良いと思うらしい(渕野先生とか)

下記を貼っておきますね
・強制法があって、ZFCと相性がいいみたい(渕野先生は、別のところでも書いていた気がする)
・“コーエンの強制法”は、連続体仮説問題に対して、ZFC上で展開されたし

https://fuchino.ddo.jp/misc/cohenx.pdf
“コーエンの強制法” と強制法1)2)渕野昌
12.November 2016 (04:31 JST) 版
1) このテキストは,『数理科学』2014年10月号に掲載予定の同名の記事の拡張版です.ページ数の制限のために記事から削除せざるを得なかった細部や,そこには含めないことにしたリマークのいくつかを加えてあります.

P13
5 連続体問題
コーエンの結果から連続体仮説は集合論の公理系から独立であることが分ったわけだが,このことは,現在の集合論の公理系がまだ拡張を必要としていることを示している,と解釈することもできる.
こう解釈する立場からは,そもそも集合論の正しい拡張が何かが議論できるのか,が問題となってくるが,巨大基数の理論と強制法の理論は,集合論の公理系の拡張の可能性をさぐるための思考実験の手法と見ることもでき,世紀末以降に得られつつある集合論でのそのような思考実験の厖大な成果は,そのような議論の可能性を強く示唆しているし,ウディンらによる研究は,そのような研究の成果による連続体問題の真の解決が手のとどくところにまで近づいていることを予感させるものですらある.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.025s