Inter-universal geometry と ABC予想 (応援スレ) 73 (713レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
671
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 07:29:17.25 ID:psDSFTci(1/9) AAS
>>636
>ついでにいうと可算選択公理では可算集合の整列はできない
>なぜなら可算集合の空でない部分集合の全体は、非可算集合だから
>ただし、別のやり方で整列はできる
>可算=自然数の全体との全単射が存在する
>ということだから、この全単射を使えばいい

そこ 意味不明だよ
ここは、中高一貫校生が来る可能性があるので
赤ペン先生をしておく

1)下記 可算選択公理 Axiom of countable choice ACω は
 ”Application of ACω yields a sequence (Bn) n∈N ”
 つまり ω長さの sequence (Bn) n∈N を作る能力がある
2)一方 Axiom of dependent choice DC は 下記
 ”The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5]
 It is possible to generalize the axiom to produce transfinite sequences.
 If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.”
3)要するに、DC は ACωより強力で ωを超えて ”produce transfinite sequences”だ
 また ”If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.”
 ってこと。つまりは、種々の選択公理の能力は、生成できる列長さで 測ることができる■

なお、下記”every countable collection of non-empty sets must have a choice function. ”
において ”collection of non-empty sets”の素性は不問
可算の集合の collectionであれ、非可算の集合の collectionであれ なんであれ 無問題
問題は ”countable collection”のところ
collectionが 非可算だと 可算選択公理の守備範囲外
下記を百回音読してね ;p)

(参考)
https://en.wikipedia.org/wiki/Axiom_of_countable_choice
Axiom of countable choice
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function.
Applications
ACω is particularly useful for the development of mathematical analysis, where many results depend on having a choice function for a countable collection of sets of real numbers.
Example: infinite implies Dedekind-infinite
As an example of an application of ACω, here is a proof (from ZF + ACω) that every infinite set is Dedekind-infinite:[2]
Let X be infinite. For each natural number n, let An be the set of all n-tuples of distinct elements of X.
Since X is infinite, each An is non-empty.
Application of ACω yields a sequence (Bn) n∈N where each Bn is an n-tuple.
One can then concatenate these tuples into a single sequence (bn)n∈N of elements of X, possibly with repeating elements.

つづく
672: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 07:30:11.74 ID:psDSFTci(2/9) AAS
つづき

Weaker systems
Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice.[6] However, some countably infinite sets of non-empty sets can be proven to have a choice function in ZF without any form of the axiom of choice.
For example, Vω∖{∅} has a choice function, where Vω is the set of hereditarily finite sets, i.e. the first set in the Von Neumann universe of non-finite rank.
The choice function is (trivially) the least element in the well-ordering.
Another example is the set of proper and bounded open intervals of real numbers with rational endpoints.
ZF+ACω suffices to prove that the union of countably many countable sets is countable. These statements are not equivalent: Cohen's First Model supplies an example where countable unions of countable sets are countable, but where ACω does not hold.[7]

https://en.wikipedia.org/wiki/Axiom_of_dependent_choice
Axiom of dependent choice
In mathematics, the axiom of dependent choice, denoted by
DC, is a weak form of the axiom of choice (AC) that is still sufficient to develop much of real analysis. It was introduced by Paul Bernays in a 1942 article in reverse mathematics that explores which set-theoretic axioms are needed to develop analysis.[a]
Relation with other axioms
Unlike full AC, DC is insufficient to prove (given ZF) that there is a non-measurable set of real numbers, or that there is a set of real numbers without the property of Baire or without the perfect set property. This follows because the Solovay model satisfies ZF+DC, and every set of real numbers in this model is Lebesgue measurable, has the Baire property and has the perfect set property.
The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5]
It is possible to generalize the axiom to produce transfinite sequences.
If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.

https://ja.wikipedia.org/wiki/%E5%BE%93%E5%B1%9E%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86
従属選択公理(英語: axiom of dependent choice; DCと略される)
(引用終り)
以上
675
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 07:51:14.19 ID:psDSFTci(3/9) AAS
>>664-670
ここは、中高一貫校生が来る可能性があるので
書いておくが ;p)

>>”σ集合体では加算個の演算が自由にできる”
>加算個は可算個の誤記として、

そこね >>663 確率論基礎 重川 P6からの転記だが
重川先生の誤記だね。教えてあげると 喜ぶだろう (^^

さて、下記 確率の公理 にその答えの記述がある
百回音読してね
なお、『簡単な例:コイントス』があるよね
コイン投げの可算回も可!!!www ;p)
サイコロ投げも 同じだ

(参考)
https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E3%81%AE%E5%85%AC%E7%90%86
確率の公理
コルモゴロフの公理は、1933年にアンドレイ・コルモゴロフが導入した、確率論の基礎となる公理である[1]
コルモゴロフによる公理系

公理5と6より、次の一般化加法定理(完全加法牲)が導かれる[7]。
一般化加法定理
集合列
{An}n∈N は、互いに素であり、
⋃n=1〜∞An∈Fならば、
P(⋃i=1〜∞Ai)=?i=1〜∞P(Ai).
一般化加法定理を満たす
P は、F が生成する完全加法族(σ-集合体)上の非負かつ完全加法的な集合関数に一意的に拡張可能である[8]。
簡単な例:コイントス
一回のコイントスを考え、コインが表 (H) または裏 (T) のいずれかで着地するものとする(両方は起きえない)。コインが公正であるかどうかに関して仮定はしない。

上記の通り、表の確率と裏の確率の合計は1である。

https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E5%8A%A0%E6%B3%95%E6%97%8F
完全加法族
完全加法族(英: completely additive class [of sets], completely additive family [of sets])とは、主な用途として測度を定義することに十分な特定の性質を満たす集合の集合である。特に測度が定義される集合全体を集めた集合族は完全加法族になる。

可算加法族(英: countably additive class [of sets], countably additive family [of sets])、(σ-)加法族((シグマ)かほうぞく、英: σ-additive family [of sets])、σ-集合代数(シグマしゅうごうだいすう、英: σ-algebra [of subsets over a set], σ-set algebra)、σ-集合体(シグマしゅうごうたい、英: σ-field [of sets])[注 1]ともいう。

この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である[1]。

いくつかの等価な定義がある。

(引用終り)
以上
682
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 08:12:01.82 ID:psDSFTci(4/9) AAS
>>674
>灘も甲陽学院も落ちてクソ公立中クソ公立高にしかいけなかった高卒ホモは嘘指導で大恥かく

神戸の小学校時代 灘の難しさは すでに有名だった(実話として 私の叔父が公立中から灘高校へ入って すごいと言われた)
小学校で一人通るか通らないか と当時言われていた(いまは全国区らしい。当時は 地方区)
私の小学校からは 受験する人は居なかったと思う

中学校で、2年で同級生になった子が クラスで1番で 学年でもトップクラスで
噂では 灘中を落ちて 進学は灘高を狙っていると言われた
(のち 灘高は受からず 公立のナンバーワン高へ)

私が高校に入学して、入試で一番の子と同級生
噂では、その子は 灘を落ちて この高校に来たという
もう一人別に、凄くできる子がいて、全国模試で常に上位で 東大合格圏(学年ではほとんどトップ)
その子は 東大法学部に入った。あとで聞くと、その子も 灘におちて 公立校に来たらしい
灘高生でも 東大法学部おちる人いるから まあ 公立校周り道もありだろう

私? 私立の中や高はお金かかるし 家から遠い
考えたことも無かったが、成績でも とても灘とかのレベルではなかったね ;p)

> DCはACωから導けない と白状する正真正銘の白知

ふっふ、ほっほww ;p)
下記
”従属選択公理は可算選択公理を導き、それより真に強い公理である。[5][6]”だってよ
文献[5][6]を 百回音読してねw ;p)

https://ja.wikipedia.org/wiki/%E5%BE%93%E5%B1%9E%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86
従属選択公理(英語: axiom of dependent choice; DCと略される)
他の公理との関連
完全な ACと違って、DCは(ZFの下で) 実数の不可測集合やベールの性質を持たない集合や perfect set property を持たない集合の存在を証明するのに不十分である。これはソロヴェイモデルにおいては ZF+DCが成り立ちながら実数の集合が全てルベーグ可測でベールの性質を持ち perfect set property を持つからである。
従属選択公理は可算選択公理を導き、それより真に強い公理である。[5][6]
参考文献
5.^ ベルナイスが従属選択公理から可算選択公理が導かれることを証明した。参照: p. 86 in Bernays, Paul (1942). “Part III. Infinity and enumerability. Analysis.”. Journal of Symbolic Logic. A system of axiomatic set theory 7 (2): 65–89. doi:10.2307/2266303. JSTOR 2266303. MR0006333.
6.^ 可算選択公理が従属選択公理を導かないことの証明は次のものを参照: Jech, Thomas (1973), The Axiom of Choice, North Holland, pp. 130–131, ISBN 978-0-486-46624-8
686
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 14:02:37.94 ID:psDSFTci(5/9) AAS
>>685
>望月先生に粘着嫌がらせ書き込んでるのって反日サイコパスだけなんだな

ID:r4GwHs6E さん、ありがとうございます
スレ主です。私が 日の丸数学を応援して何が悪い?
日本のRIMS 望月数学を 日本人が応援して 何も悪いことはない!
望月先生 がんばってください!!
688
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 14:15:00.08 ID:psDSFTci(6/9) AAS
>>683
>「σ集合体において可算個の演算が自由にできる」
>「演算」とは集合の合併∪と交叉∩を指す。
>「数学において無限回の操作の繰り返しは許されない」に対する反例としてσ集合体を持ち出すのはまったくトンチンカン。

ゴキブリくんは、そういう粗雑な頭だから 数学科のオチコボレさんなのだw
そもそも

1)例えば 下記 古代ギリシャのアキレスと亀においては、無限というものが 十分理解できていないから
 パラドックスに見えたが、現代数学の視点からは 幾通りかの数学的な解が可能
 その一つが、無限回の演算を認めることだ
 つまり、『アキレスが今度は地点Bに達したときには、亀はまたその時間分だけ先へ進む(地点C)』
 これを 無限回繰り返して良い と すれば パラドックスに見えたが その実”無限回の演算”について
 例えば 極限 として定義すれば 良いだけのこと(これは 21世紀では ほんの一つの解釈にすぎない)
2)つまりは、「数学において無限回の操作の繰り返しは許されない」は 古代ギリシャ時代の話だ
 これ対する反例は、21世紀 現代数学ではいくらでもある
 単に一つの反例が上記の 極限と解釈する方法だし
 あるいは、上記の「σ集合体において可算個の演算が自由にできる」の話だ
 測度論による確率で σ集合体を使うと 無限回のコイン投げやサイコロ投げの確率を扱える
 つまり、「数学において無限回の操作の繰り返しは許されない」の反例の一つだ
3)他にも いろいろあるが 例えば下記のオイラー積がある
 下記”ディリクレ級数を素数に関する総乗の形で表した無限積”
 左辺をディリクレ級数、右辺を無限積として もし ディリクレ級数が有限和であったり
 あるいは 無限積が有限で打ち切られたら? 有限演算限定では 左辺=右辺 の等号は不成立!■
 (なお、これが リーマン予想に直結することは ご存知の通り(下記小山))

(参考)>>663より
https://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%8E%E3%83%B3%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
ゼノンのパラドックス
アキレスと亀
スタート後、アキレスが地点Aに達した時には、亀はアキレスがそこに達するまでの時間分だけ先に進んでいる(地点B)。アキレスが今度は地点Bに達したときには、亀はまたその時間分だけ先へ進む(地点C)。同様にアキレスが地点Cの時には、亀はさらにその先にいることになる。この考えはいくらでも続けることができ、結果、いつまでたってもアキレスは亀に追いつけない

https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E7%A9%8D
オイラー積(英: Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明した18世紀の数学者レオンハルト・オイラーの名前にちなむ

https://researchmap.jp/koyama/published_papers/16345243/attachment_file.pdf
深リーマン予想 researchmap 小山信也 2019 数理科学
— ちょうど当時,黒川氏も木村氏と独立に臨界領. 域内のオイラー積を研究しており,黒川氏は,そ. の予想を「深リーマン予想」と名付け,解説書 4). を著した
689: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 14:16:49.34 ID:psDSFTci(7/9) AAS
>>687
ID:r4GwHs6E さん、ありがとうございます
695
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 20:12:49.81 ID:psDSFTci(8/9) AAS
>>690-691
>>3)他にも いろいろあるが 例えば下記のオイラー積がある
>> 下記”ディリクレ級数を素数に関する総乗の形で表した無限積”
>無限回の操作の繰り返しは well-defined でないことがどうしても理解できないオチコボレ君

やれやれ
数学科1年の1日目で 目を白黒させて オチコボレさんになった人よ
そういう 固い頭だから ダメなんじゃないの?
現代数学は、いくつかの 無限回の操作の繰り返しを well-defined にできる
そう考える方が 現代数学 を深く理解できるよ
例えば、下記のゼータ関数のオイラー積 高校数学の美しい物語 などな (^^
百回音読してね ;p)

(参考)
https://manabitimes.jp/math/2836
高校数学の美しい物語
ゼータ関数のオイラー積 2023/09/04
目次
証明のスケッチ
応用
素数の無限性の証明
オイラー積表示によって素数が無限個あることが証明できます。
メビウス関数との関連
ウォリス積との類似

https://tsujimotter.hatenablog.com/entry/2014/03/30/172641
tsujimotterのノートブック
2014-03-30
ゼータ関数のオイラー積
オイラー積とは
レオンハルト・オイラーといえば世界一美しい公式と呼ばれる「オイラーの公式」が有名ですが、私が一番好きなのは次のオイラー積と呼ばれる公式です。
オイラー積(完全版)
略す
左辺が「1以上のすべての整数を使った和」となっており、右辺が「すべての素数を使った積」となっています。右辺が積の形をしているのでオイラー積と呼ばれます。
ポイントは「すべての整数」「すべての素数」を漏れなくだぶりなく使っている点で、まさに整数と素数をつなぐ架け橋になっているといえます。筆者はこのコンセプトが大好きです。
オイラー積の導出方法

素因数分解の一意性
ここで使っているのは、ただ一点、「素因数分解の一意性」です。
この「素因数分解の一意性」という整数の当たり前の性質を使っておきながら、それを的確な式の表現に落とすことで、誰も見たことない結果を生み出してしまう、というやり方が鮮やか
おわりに
ゼータ関数のオイラー積という美しい式を紹介しました。この式は「整数の和と素数の積に変換する」という一貫したコンセプトを持っていたのです。
しかもその導出は、「素因数分解の一意性」という整数の根源的な性質を用いるという、とびきり鮮やかなものでした。
オイラーがゼータ関数に着目したのは、素数の性質を探るためだと言われています。実際、オイラーはこの式から「素数の逆数の和が発散する」ことを示しています。いつかこの方法についても紹介したいですね。
697
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/16(土) 20:35:18.54 ID:psDSFTci(9/9) AAS
>>691
>>例えば 下記 古代ギリシャのアキレスと亀においては、無限というものが 十分理解できていないから
>無限を理解できていないのは、無限回のサイコロ投げはいつか終わると思ってる君。
>いつか終わるならそれは無限回ではなく有限回。

現代数学は、いくつかの 無限回の操作の繰り返しを well-defined にできる
そう考える方が 現代数学 を深く理解できるよ

例えば、下記の重川一郎 確率論基礎 P47 ランダム・ウォーク より
"定義1.1 時間t∈T をパラメーターとして持つ確率変数の族(Xt)を確率過程という.
T として[0,∞),Z+={0,1,2,・・・}などがよく使われる.
[0,∞)のとき連続時間,Z+のとき離散時間という."

いま、簡単に 確率変数 Xtが 0 又は 1の値を 各1/2の確率で取るとする
これは コイン投げと同じ事象だ。それで パラメーターt で 連続として
0〜100秒を考える。連続だから、この時間内で 可算無限個の t1,t2,・・・
のサンプリングが考えられる。これは コイン投げを可算無限行ったことに等しい

同じことを Xtが {1,2,3,4,5,6}の6つの値を 各1/6で取る 確率過程を考えることが可能
コイン投げと同様に、可算無限個の t1,t2,・・・のサンプリングが考えられる
これは サイコロ投げを可算無限行ったことに等しい■

 >>663より再録
https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html
重川一郎
講義ノート
https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2013bpr.pdf
確率論基礎
重川一郎 平成26年8月11日
P6
確率空間
基本的にσ集合体では可算個の演算が自由にできる.確率論では可測空間に,確率を付加したものを考える.
P7
例1.1 サイコロ投げの場合確率空間として次のものを準備すればよい.
Ω={1,2,・・・,6}^N ∋ω=(ω1,ω2,・・・)
ωnは、1,2,・・・,6のいずれかで,n回目に出た目を表す
これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorov
の拡張定理と呼ばれる定理により証明できる.

P47
第4章ランダム・ウォーク
この章では,最も簡単な確率過程としてランダム・ウォークを扱う.
1.単純ランダム・ウォーク
単純ランダム・ウォーク
定義1.1 時間t∈T をパラメーターとして持つ確率変数の族(Xt)を確率過程という.
T として[0,∞),Z+={0,1,2,・・・}などがよく使われる.
[0,∞)のとき連続時間,Z+のとき離散時間という.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s