大学数学の質問スレ Part1 (282レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
172(1): 132人目の素数さん [] 2025/07/27(日) 11:56:05.93 ID:l07VtkZb(1/3) AAS
V を n 次元ベクトル空間とする。
V* を V の双対空間とする。
a1, …, an を V* の基底とする。
ai(vi) = 1 for i ∈ {1, …, n}
ai(vj) = 0 for i, j ∈ {1, …, n} such that i ≠ j
となるような V の基底 v1, …, vn が存在することを V と V* の双対性を使わずに証明せよ。
174: 132人目の素数さん [] 2025/07/27(日) 12:49:10.77 ID:1NymgaJg(1) AAS
>>172
(ai(vj)(cj)=0
(ai(Σvjcj))=0
Σcjvj=0
cj=0
rank(ai(vj))=n
(ai(vj))(bjk)=(eik)
(ai(Σvjbjk))=(eik)
wk=Σvjbjk
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.022s