[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
1
(8): 現代数学の系譜 雑談 ◆e.a0E5TtKE [sage] 2019/12/20(金) 23:28:06.21 ID:ZaXFXilg(1/2) AAS
前スレ
現代数学の系譜 カントル 超限集合論
2chスレ:math

関連スレ
1)現代数学はインチキのデパート
2chスレ:math
直接には、ここの28からの続き

2) 1)の前スレ
現代数学はインチキだらけ
2chスレ:math

3) 2)の中の正則性公理に関する議論の前のスレ(^^
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77
2chスレ:math
2
(4): 132人目の素数さん [sage] 2019/12/20(金) 23:31:34.02 ID:ZaXFXilg(2/2) AAS
まあ、カッカとせずに、のんびりやりましょう(^^
あと、関連事項は、>>1のスレから適宜写してくることにしましょう(^^

なお、私は
『おっさんずラブ』ならぬ、おっさんずゼミは・・ (゜ロ゜;
おっさんずゼミ=「どこのだれとも知れぬ”名無しさん”のおっさんたちとの、ゼミ」、それやる気ないです
おれは、そんな趣味ないよw(^^;
好きなときに好きなことを書かせてもらいます
5CH数学板は、遊びです

https://ja.wikipedia.org/wiki/%E3%81%8A%E3%81%A3%E3%81%95%E3%82%93%E3%81%9A%E3%83%A9%E3%83%96
おっさんずラブ
(抜粋)
『おっさんずラブ』は、2016年からテレビ朝日系列において放送されているテレビドラマシリーズである。同年12月31日(30日深夜)に『年の瀬 変愛ドラマ第3夜』として単発放送された[1][注釈 1]後、「土曜ナイトドラマ」枠で2018年に第1シリーズ[2]、2019年に第2シリーズが放送予定である。
(引用終り)
5
(1): 132人目の素数さん [] 2019/12/21(土) 17:32:57.80 ID:F38HrLhN(1/4) AAS
>>1
数学板を荒すな
チラシの裏でやれ
181: 132人目の素数さん [] 2020/01/01(水) 16:54:43.34 ID:E03EXCHH(2/10) AAS
>>157
◆e.a0E5TtKE 2020年二番めのトンデモ発言
>・・・{{{Φ}}}・・・ (=可算無限重シングルトン)ができる

・・・{{{Φ}}}・・・ をよく見よう 
一番外側の{}がないね
つ・ま・り、集合ではないんだな
(正則性公理を満たさないという指摘に対する
 対応の結果がこれなら完全な自爆行為だな)

>>158
>極限で定義したと言っている

◆e.a0E5TtKEのナイーブな直感だろ
でもその直感、間違ってるから

>>164
◆e.a0E5TtKE 2020年二番めのトンデモ発言(続)
>番号    ∪a
>0:=Φ  
>1:={Φ}   {0}
>2:={{Φ}}  {0,1}
> ・
> ・
>n:={・・{Φ}・・} {0,1・・n-1}
> ・
> ・
> ↓(極限 lim n→∞ )
>
>ω:=・・・{Φ}・・・ {0,1・・n-1・・}(=:N(自然数)*))

Φの外の{}と自然数を対応付けたといいたいようだが
そういう動物レベルのナイーブ直感じゃ
全然数学にはならないんだな 間違ってるから

>>170
>私の書いていることの殆どは、典拠が付いているはず

典拠になってないけど
君、検索した文章、全然読めてないね
それじゃ数学は無理

>冷静になれよ

君こそ冷静になったら?
こんな初歩的な間違いにいつまで気づけないのは
人間としてまったく恥ずかしいよ
183
(3): 132人目の素数さん [] 2020/01/01(水) 16:56:53.42 ID:E03EXCHH(4/10) AAS
>>176
◆e.a0E5TtKE 2020年四番目のトンデモ発言
(これが初トンデモ発言同様一番ヒドイ間違い)
>0 :=Φ
>1 := suc(0) = {0} = {Φ}
>2 := suc(1) = {0, 1} = {0, {0}} = { Φ, {Φ} }→{{Φ}}(→は、一番右のΦを残すように不要の{}とΦを除く操作)
>3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { Φ, {Φ}, { Φ, {Φ} } }→{{{Φ}}}(同上)

>ノイマン構成の集合に対応して
>→:(→は、一番右のΦを残すように不要の{}とΦを除く操作)
>という集合操作を行うと、Zermeloのシングルトンが生成される

>フォン・ノイマン宇宙に存在する、超限回繰り返しよるω=Nに対しては
>→:(→は、一番右のΦを残すように不要の{}とΦを除く操作)
>という集合操作、それは”超限回”の操作に属するだろうが
>それを認めれば、ノイマン構成の集合からZermelo構成の集合が導かれる

ノイマン構成の自然数nの「一番右のΦ」はどの要素の中にある?
自然数n-1の要素の中だよな?

◆e.a0E5TtKEの言い分では
「ωの一番右の要素中の一番右のΦを残すように
 不要の{}とΦを除く操作を実施すれば
 Zermeloのシングルトンωが生成される」
となるが、実は致命的な欠陥がある

ωには「一番右の要素」が存在しない!
(つまりωは後続順序数ではない!)

したがって◆e.a0E5TtKEのナイーブな直感による
「アルゴリズム」は、ノイマンのωの中の
ありもしない「一番右の要素」を探しにいったまま
永遠に戻ってこない

>(勿論、極限として理解する方が分り易いのですが)

正しく極限をとればシングルトンにならないことは明らか

Zermelo構成の順序数がシングルトンになるのは
後続順序数であるときそのときに限る

極限順序数の場合にはZermelo構成の順序数は
無限集合にならざるを得ない
(「自分未満の任意の数への∈降下列が存在する」
 という性質を満たすとして)
218: 132人目の素数さん [] 2020/01/02(木) 11:58:56.85 ID:lJNP8tAT(12/23) AAS
>>216
そもそもステ立て人>>1はスレ主ではない

書き込み制限も削除もできない奴なんか「主」じゃない
ただのピエロwwwwwww
262: 132人目の素数さん [] 2020/01/03(金) 11:38:52.85 ID:glmNLmg1(4/11) AAS
>>253
>今問題になっているのは
>1,2‥の上極限としてどのような集合をあてがうべきなのか

その通り

>今は、あなたの主張である
>Zermelo流ではωにあてがわれる集合Ωとしては
>Ω自身も、その元も、そのまた元も、‥
>どこまで行ってもsingletonしか現れないものがあてがわれる。
>その存在を認めてもZFCの公理となんら矛盾しない。
>が問題になっているのだから。

その通り

まずΩがsingletonだというだけで
極限順序数であることと矛盾する

Ωの唯一つの要素がΩの前者になってしまうから

Ωの前者、さらにその前者・・・と遡れると
当然正則性公理と矛盾するが、すでに
前者が存在するだけで矛盾する

要するにΩが存在するとしても
その要素は唯一ではない
さらにいえば有限個でもない
なぜなら要素中の最大値が存在すれば
それがΩの前者になってしまうから
741
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/28(土) 11:16:30.13 ID:MRwZqC/h(1/5) AAS
>>737
だれか知らないが、コーシー列を誤読しているよ

https://ja.wikipedia.org/wiki/コーシー列
> 収束するかどうか調べるためには、その前に極限値がわからなければ
> ならないのであるが

正確には、下記だ。つまり、
”収束の定義に基づいて点列 (xn) の収束性を判定する場合、極限値 x を推定した上で |xn - x| を評価する必要がある。つまりこの方法で収束するかどうか調べるためには、その前に極限値がわからなければならないのであるが、コーシーの方法ならば極限値の推定は不要であるという利点がある。”
です。上記とは、真逆の意味だよ。分かりますか?
https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列
(抜粋)
実数におけるコーシー列
|xn - xm| を評価してコーシー列か判定すれば、極限値を仮定することなく収束性が判定できる。また本質的に同じことだが、級数の収束性を和を仮定せずに判定することもできる。
コーシーの収束判定基準という。
収束の定義に基づいて点列 (xn) の収束性を判定する場合、極限値 x を推定した上で |xn - x| を評価する必要がある。つまりこの方法で収束するかどうか調べるためには、その前に極限値がわからなければならないのであるが、コーシーの方法ならば極限値の推定は不要であるという利点がある。

コーシー列の収束性と空間の完備性
距離空間 (X,d) は、その任意のコーシー列が X 上に極限を持つとき完備であるといい、完備である距離空間を完備距離空間、または単に完備空間という。
“実数の連続性”は、実数全体の成す距離空間 R が完備であることを意味している。 すでに述べたように、Rk や Ck などもすべて完備である。 一方、有理数全体の成す集合 Q やユークリッド空間内の有理点全体 Qkなどを完備でない距離空間の例としてあげることができる。

実数の構成
実数の構成法の一つに、完備化と呼ばれる有理コーシー列から実数を定めるものがある。
(引用終り)

>1つの箱にだけサイコロの目を入れるのと全ての箱にサイコロの目を入れるの
>では同値類は異なるよ

いわんとしていることが、正確には理解できないが
空の箱を許容するという意味なら、{実数+Φ(空)} の可算無限列を作れば良い
743
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/28(土) 11:29:20.03 ID:MRwZqC/h(2/5) AAS
>>741
(引用開始)
>1つの箱にだけサイコロの目を入れるのと全ての箱にサイコロの目を入れるの
>では同値類は異なるよ
いわんとしていることが、正確には理解できないが
空の箱を許容するという意味なら、{実数+Φ(空)} の可算無限列を作れば良い
(引用終り)

この話は、非常に示唆に富んでいる
つまり、箱に入れて良い要素を増やしても、同様に確率1-εが得られるというのが、時枝理論だ
だが、明らかに、入れる要素を増やせば、一方入れる方があくまで実数しか入れないなら、的中率は下がる

(この話は、>>525に書いた通り、実数→多元数の同値類 に拡張できる。そして、任意の多元数で 同じ 確率1-εが得られる
 しかし、入れる方があくまで実数しか入れないなら、的中率は下がるべき。これ、時枝理論の矛盾です (^^; )
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.432s*