[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
33(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:06:52.76 ID:jNutOcAm(1/6) AAS
>>24
>Ωが次の性質を持つ限りZFCと両立することはできません。
>・Fを
>x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
>によって定められる集合とするときFの任意の要素はシングルトンか空集合。
>・Ωは有限Zermelo ordinal numberではない。
(前スレ>>961より)
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
(引用終り)
なので、<Zermelo構成>も<ノイマン構成>も
∈-数列
0∈1∈2∈3・・・∈n∈・・・→ω
("→ω"の意味は、ωに向けてずっと続くってことね)
(なお、ωは、超限順序数で、いわゆる”有限”ではない)
で、「0∈1∈2∈3・・・∈n∈・・・→ω」は、<Zermelo構成>も<ノイマン構成>も全く同じ
だから、この<Zermelo構成>を否定することはできません
(∵<Zermelo構成>を否定すると、<ノイマン構成>も同様に否定されるから)
但し、
<ノイマン構成>においては、ω=N(自然数の集合)なので
n∈ω(=N)は、可
というか
<ノイマン構成>なら、任意のm<nで、m∈n成立
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966))
一方、<Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立
(∵<Zermelo構成>では、後者関数の定義が、異なるため)
だから、もともと、”n not∈ω(=x1=Ωかな)”なのです(nは、任意の自然数)
これは、後者関数の定義の問題なのです
(なので、<Zermelo構成>もZFC内で成立します)
つづく
34(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:07:12.73 ID:jNutOcAm(2/6) AAS
>>33
つづき
あとは、<ノイマン構成>と異なり、<Zermelo構成>で「ω=N(自然数の集合)」以外のωの定義が可能かってことね
<Zermelo構成>では、「0∈1∈2∈3・・・∈n∈・・・→ω」の極限として、ωを定義すれば良い
この論法は、<Zermelo構成>以外の後者関数でも使えるよ
以上
35(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:13:24.46 ID:jNutOcAm(3/6) AAS
>>34 補足
これは、下記の極限順序数の定義
「順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)」
と同じかな(^^
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
(抜粋)
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)
36: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:18:27.97 ID:jNutOcAm(4/6) AAS
>>33 訂正
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966))
↓
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全ての要素からなる集合だから(前スレ966))
かな
コピペでウェブサイトから文の一部を切り取ってくると、繋がりがおかしくなっていた(^^;
37(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 08:22:58.77 ID:jNutOcAm(5/6) AAS
>>35 補足
>極限順序数
>極限順序数は他にもいろいろなやり方で定義できる:
>・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
順序位相(英語版)に関する極限点だから、極限順序数と呼ぶのかな?(^^
47(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/22(日) 20:19:33.66 ID:jNutOcAm(6/6) AAS
>>40
何を訳の分からんことを
言っているのかね?
ノイマン構成によるωだって
結局は、極限なんだよ
いかなる前者の存在もありえず、よってωは後者関数による生成ではない
その極限の存在を認めるのが、無限公理ですよ
Zermelo構成に同じ
結局は、極限なんだよ
Zermelo構成による後者関数の極限
lim n→∞ suc(n) が存在する
それを、可算多重シングルトンωと名付ける(数学的には定義するだな)
あのさ
Zermelo構成対する批判は
ノイマン構成についても当てはまるんだぜ
よく覚えておけよw(^^
(>>35より再録)
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
(抜粋)
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s