[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
522(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/10(日) 23:59:50.72 ID:6AF3LOKJ(13/13) AAS
>>521
つづき
これより
ζp^{(p+1)/2} + 1/ζp^{(p+1)/2} = -2cosπ/p
つまり、
cosπ/p ∈Q(ζ2p) (=(ζp))
なお
ζp^{(p+1)/2} - 1/ζp^{(p+1)/2} = -2i sinπ/p
だから
i ∈Q(ζ4p) が使えて(割るか掛けるかする)
(cosπ/p,sinπ/p) ⊂ Q(ζ2p)∩R(実円分体)
です
で、上記より実円分体で、
(ζp +1/ζp,・・・,ζp^{(p-1)/2} +1/ζp^{(p-1)/2} )⊂ Q(ζp)∩ R
= Q(ζ2p)∩ R
= Q(cosπ/p)⊂Q(sinπ/p)⊂ Q(ζ4p)∩ R
=Q(i,ζp)∩ R
が成り立つ
元の円分体で示すと
Q(ζp)= Q(ζ2p)⊂ Q(ζ4p)=Q(i,ζp)
です
言葉で述べると
・Q(ζp)は、Q内に-1=e^πiを含んでいるので、Q(ζ2p)(2p等分点による)と等しい
・Q(ζ4p)(4p等分点による)は、iを含む
・Q(i,ζp)で、iとζpによる拡大体になる
つづく
523(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/11(月) 00:00:44.35 ID:qyW7buAe(1/40) AAS
>>522
つづき
で、これを因数分解で見ると
x^4p - 1
=(x^2p - 1)(x^2p + 1)
=(x^p - 1)(x^p + 1)(x^2p + 1)
=0
x^p = 1 から、ζpがでる
x^p = - 1 から、- 1=e^πi を使ってζ2pがでるが、Q(ζp)= Q(ζ2p)
x^2p = - 1 から、- 1=e^πi を使ってζ4pがでる
体の拡大の次数は
|Q(ζp):Q|=p-1
|Q(ζ2p):Q|=p-1
|Q(ζ4p):Q|=2(p-1)
|Q(ζp)∩ R:Q|=|Q(ζ2p)∩ R:Q|=(p-1)/2
|Q(ζ4p)∩ R:Q|=p-1
>>114の
問1:cos(π/n)∈Q(sin(π/n)) の証明は、
>>158-159の通りで、
「nが奇数ならn-1=2mと表せてcosの2m倍角公式がsinだけで書ける」(spread 多項式 Smを使う)ことから従う
問2:sinπ/p not ∈ Q(ζ2p + 1/ζ2p)⊂Q(ζ2p)=Q(ζp)の略証は、>>178に書いた通り
あと残っているのは
”Q(sinπ/p) = Q(ζ4p)∩ R ”が成り立つはずなのだが・・、
まだ示せていない(^^;
追伸
なお、ここらの式変形やテクニックは、円分体やガロア理論では頻出だったよね、確か(^^;
まあ、ガウスなら秒殺で浮かぶだろうことが、鈍才のスレ主は、思いだしながら1週間くらいかかったよ(^^
つづく
525: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/11(月) 00:06:16.49 ID:qyW7buAe(3/40) AAS
>>522 タイポ訂正
(cosπ/p,sinπ/p) ⊂ Q(ζ2p)∩R(実円分体)
↓
(cosπ/p,sinπ/p) ⊂ Q(ζ4p)∩R(実円分体)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.473s*