[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
301
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 11:37:14.09 ID:c3aU14PB(15/37) AAS
>>298

下記 大阿久先生はPDFは、49ページですが
円分体の最小多項式の既約をEisenstein の 判定法で示しています。
この手法は、結構標準(だいたいこれ)ですね
G が巡回群であることも、示されていますよ
そんな、大げさな話しじゃないよね
これ、ちょっとお薦めです

http://lab.twcu.ac.jp/~oaku/galois.pdf
ガロア理論入門(体と群と方程式)
大阿久 俊則 東京女子大学 現代教養学部 数理科学科 数学専攻

この講義では,ガロア理論の基本的な部分を群,環,体などの現代の代数学の言葉を用
いて解説する.体としては複素数体の部分体(古典的な場合と呼ばれる)を主に扱う.
なお,「環と加群の基礎」の内容,特に単項イデアル整域 (PID) についての事項は既知
として自由に用いるので,必要に応じて参照してください.

P48-49
14 円分体

ζ の Q 上の最小多項式は
f(x) = x^p?1 + x^p?2 + ・ ・ ・ + x + 1
であることを示そう.x^p ? 1 = (x ? 1)f(x) と ζ^p = 1, ζ ≠ 1 より f(ζ) = 0 である.
f(x)が Q 上既約であることを示そう.

Eisenstein の
判定法により f(x + 1) は Q 上既約である.従って f(x) も Q 上既約である.

最後に,G が巡回群であることを示そう.
(引用終り)

http://lab.twcu.ac.jp/~oaku/index_jp.html
大阿久 俊則 (おおあく としのり)
東京女子大学 現代教養学部 数理科学科 数学専攻
319
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 15:45:59.00 ID:c3aU14PB(23/37) AAS
>>281
>「Q(i)に含まれる1のべき根は±1,±iの4つだけ」の証明が難しい?

下記の”アイゼンシュタイン(Eisenstein)の既約判定定理”
これは、整数係数の範囲の因数分解ですが、証明を見れば分るように、iを添加した環Z(i)で考えても成り立つ
だから、整数環Z内で既約なら、環Z(i)内でも既約
それで、既約多項式の根を添加して、実数体Rを拡大することを考えれば良い
大阿久先生が、>>301で円周等分多項式の既約をEisenstein の 判定法で示しています
これより、円分体の根 ζ3,ζ5,ζ6,・・・,ζn,・・・ は、既約方程式の根
よって、これらは、Q(i)に含まれない(簡明に言えば、ベキ根拡大になります。高校数学の延長上です)
よって、「Q(i)に含まれる1のべき根は±1,±iの4つだけ」

QED

簡単ですよね

https://mathtrain.jp/eisenstein
高校数学の美しい物語 最終更新:2018/01/13
アイゼンシュタインの定理
(抜粋)
アイゼンシュタイン(Eisenstein)の既約判定定理
ある素数 p が存在して以下の3つの条件を満たすとき,
整数係数多項式 f(x)=anx^n+an?1x^n?1+・・・+a1x+a0 を
(整数係数の範囲でできるとこまで)因数分解すると必ず k 次式以上の因数がでてくる。

・a0 は p の倍数だが p^2 の倍数でない
・a1 から ak?1 まで全て p の倍数
・ak が p の倍数でない
特に,k=n の場合に3つの条件を満たす式は既約(それ以上因数分解できない)です。

アイゼンシュタインの定理の証明
いよいよ証明です!

方針:1つ1つ丁寧に係数を比較していくだけです。ほとんど機械的な計算で証明することができるので入試で出題されるかもしれません。

証明
ある素数 p に対して3つの条件を満たすとき
f(x)=anx^n+・・・a1x+a0

g(x)=bnx^n+・・・b1x+b0

h(x)=cnx^n+・・・c1x+c0
の積に因数分解できたとする。

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s