[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
284(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 08:34:51.72 ID:c3aU14PB(3/37) AAS
>>174
>それにしても円分体は面白い。時間があれば Washington の本をじっくり読みたいところだが、
円分体 Washington の本は、下記ですね。間違いなし(^^
(Fermat's Last Theorem関連の一部のみ引用しておきます)
https://en.wikipedia.org/wiki/Cyclotomic_field
Cyclotomic field
(抜粋)
Relation with Fermat's Last Theorem
A natural approach to proving Fermat's Last Theorem is to factor the binomial x^n + y^n, where n is an odd prime, appearing in one side of Fermat's equation
x^n + y^n = z^n
as follows:
x^n + y^n = (x + y)?(x + ζy)?…?(x + ζn???1y).
Here x and y are ordinary integers, whereas the factors are algebraic integers in the cyclotomic field Q(ζn). If unique factorization of algebraic integers were true, then it could have been used to rule out the existence of nontrivial solutions to Fermat's equation.
Kummer found a way around this difficulty.
He introduced a replacement for the prime numbers in the cyclotomic field Q(ζp), expressed the failure of unique factorization quantitatively via the class number hp and proved that if hp is not divisible by p
(such numbers p are called regular primes) then Fermat's theorem is true for the exponent n = p.
Furthermore, he gave a criterion to determine which primes are regular and using it, established Fermat's theorem for all prime exponents p less than 100, with the exception of the irregular primes 37, 59, and 67.
Kummer's work on the congruences for the class numbers of cyclotomic fields was generalized in the twentieth century by Iwasawa in Iwasawa theory and by Kubota and Leopoldt in their theory of p-adic zeta functions.
つづく
285: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 08:35:22.75 ID:c3aU14PB(4/37) AAS
>>284
つづき
References
1^ Proposition 2.7 of Washington 1997
・Bryan Birch, "Cyclotomic fields and Kummer extensions", in J.W.S. Cassels and A. Frohlich (edd), Algebraic number theory, Academic Press, 1973. Chap.III, pp. 45?93.
・Daniel A. Marcus, Number Fields, third edition, Springer-Verlag, 1977
・Washington, Lawrence C. (1997), Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83 (2 ed.), New York: Springer-Verlag, doi:10.1007/978-1-4612-1934-7, ISBN 0-387-94762-0, MR 1421575
・Serge Lang, Cyclotomic Fields I and II, Combined second edition. With an appendix by Karl Rubin. Graduate Texts in Mathematics, 121. Springer-Verlag, New York, 1990. ISBN 0-387-96671-4
Further reading
・Coates, John; Sujatha, R. (2006). Cyclotomic Fields and Zeta Values. Springer Monographs in Mathematics. Springer-Verlag. ISBN 3-540-33068-2. Zbl 1100.11002.
・Weisstein, Eric W. "Cyclotomic Field". MathWorld.
・Hazewinkel, Michiel, ed. (2001) [1994], "Cyclotomic field", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
On the Ring of Integers of Real Cyclotomic Fields. Koji Yamagata and Masakazu Yamagishi: Proc,Japan Academy, 92. Ser a (2016)
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s