[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
274(1): 132人目の素数さん [sage] 2019/02/08(金) 19:46:59.55 ID:rawv4ykn(2/3) AAS
証明に一箇所「ちゃんと証明すると結構大変」なことがあって
それこそ「Q(i)に含まれる1のべき根は±1,±iの4つだけ」
ということで、それは円分体のガロア群を計算することもほぼ同じ原理ですが
その根本的なところをスレ主は押さえていない。
ま、教えませんけどw
円分体(1のべき根の体)のことを滔々と語りながら
1のべき根が何かも知らなかったひとに何を言っても無駄でしょう...
281(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 00:40:49.43 ID:c3aU14PB(1/37) AAS
>>274
「Q(i)に含まれる1のべき根は±1,±iの4つだけ」の証明が難しい?
ここは、小学生もいるので、変なことを言わないように、お願いします(^^
命題A: 「Q(i)に含まれる1のべき根は±1,±iの4つだけ」
↓↑
命題B:(>>248より)αを cos(απ)=p, sin(απ)=q をみたす実数とすると、(p,q)が、自明な解でないとき αは無理数である
これ成立ですよ! 命題AとBは同値
命題Bが>>248で証明した命題ですよ!
以下、証明します
まず
命題Bを簡明に言い換えると
z= cos(απ) + i sin(απ) =e^(iαπ)とおいて
命題B’:zが単位円の有理点であれば、zの偏角αは無理数である
とします
命題Aを簡明に言い換えると
命題A’: 「Q(i)に含まれる円の等分点は±1,±iの4つだけ」
(円の等分点は、下記 永野哲也先生ご参照 )
1)命題A’→命題B’
証明
背理法を使う。
zが単位円の有理点であるにも関わらず、zの偏角αは有理数であるとする
>>248で示した様に、zは円の等分点になる。これは、命題Aに矛盾する
2)命題B’→命題A’
証明
命題B’より、z= cos(απ) + i sin(απ) が、単位円の有理点であれば、zの偏角αは無理数である
よって、zは円の等分点ではない。従って、Q(i)に含まれる円の等分点は±1,±iの4つだけである
QED
簡単でしょ(^^
http://sun.ac.jp/prof/hnagano/
永野 哲也研 長崎県立大
http://sun.ac.jp/prof/hnagano/houkoku/h26ensyu2-16.html#1602
第16回
(抜粋)
1.円の等分点
zk=cos 2πk/n + i sin 2πk/n (k=1,2,・・・,n)・・・(1)
(∵) z=1から測って、n等分点の最初の点z1の偏角は、1周が2π(=360度)であるので、 2π/n(ラジアン)
である。それ以後のn等分点は、隣の点と角 2π/n(ラジアン)だけ離れているので、
z2の偏角は 2π/n×2(ラジアン)、z3の偏角は 2π/n×3(ラジアン)、・・・、znの偏角は 2π/n×n=2π(ラジアン)となる。
これらは、方程式
x^n=1
の根である
1の原始n乗根
上式(1)で、k=1 と2以上のkについては、nと互いに素となるkの複素数zkを1の原始n乗根という
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s