[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
248
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 12:10:24.51 ID:XX3WYJPV(2/20) AAS
>>203
遠隔レス失礼

問題
ピタゴラス方程式 a^2+b^2=c^2 の整数解が
abc≠0 のとき、自明でない解という。
αをピタゴラス方程式の自明でない解に対して
cos(απ)=a/c, sin(απ)=b/c
をみたす実数とすると、αは無理数であることを示せ。

問題改
単位円の方程式 p^2+q^2=1 の有理数解が
(p,q) = (1,0),(0,i) ,(-1,0),(0,-i)のとき、自明な解ということにする。
ここに、iは虚数単位である。
αを
cos(απ)=p, sin(απ)=q
をみたす実数とすると、
(p,q)が、自明な解でないとき
αは無理数であることを示せ。

とします

(略証)
背理法を使う
p+iq =cos(απ)+i*sin(απ)
は、単位円の方程式 x^2+y^2=1
を満たしていることに注意する

α=m/n ここに、m、nは整数
と書けたとする

cos(απ)+i*sin(απ)を、2n乗する
{cos(απ)+i*sin(απ)}^2n
={cos(m/n π)+i*sin(m/n π)}^2n
={cos(2m π)+i*sin(2m π)}^2n
=1

つまり、
cos(απ)+i*sin(απ)=ζ2n 但し、ζ2nは、上記の自明な解以外
(ここに、ζ2nは、いつもの円分体の根を表す。)

ところで、円分体の理論より、ζ2nは代数拡大であり、Q(i)の元ではない
よって、矛盾が生じたので、αは有理数ではない。即ち、αは無理数
略証終わり

言いたいことは、こんなことかなー?
これ、確かに面白ね〜(^^
良い視点だと思う!(^^
249: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 13:03:27.47 ID:XX3WYJPV(3/20) AAS
>>248
補足

読み返すと、文が拙いなー(^^

例えば
cos(απ)+i*sin(απ)=ζ2n 但し、ζ2nは、上記の自明な解以外
 ↓
cos(απ)+i*sin(απ)=(ζ2n)^h 但し、h>=1 の整数で、ζ2nは、上記の自明な解以外
とか、書くべきかも

まあ、普段証明を書かないからね
数学科生は、もっと洗練された表現をするのでしょうね(^^
こなれた教科書とか、大学教員の書きぶりをみると、こういうところ気配りがあるよね
250: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 13:27:52.78 ID:XX3WYJPV(4/20) AAS
>>248 タイポ訂正

={cos(2m π)+i*sin(2m π)}^2n
 ↓
=cos(2m π)+i*sin(2m π)

ケアレスミスが多いな(^^;
気を付けましょう〜!
試験なら減点されそう
251
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 14:03:03.65 ID:XX3WYJPV(5/20) AAS
>>248
全く蛇足だが

・この話(αは無理数)は、どこかの教科書などにありそうに思うね
・p+iq =cos(απ)+i*sin(απ)は、岩澤理論の下記Lの外なんやろね(岩澤理論は全く理解していませんが(^^ )

https://ja.wikipedia.org/wiki/%E5%B2%A9%E6%BE%A4%E7%90%86%E8%AB%96
岩澤理論
(抜粋)
円分拡大の数論
1 の原始 p 乗根 ζ を添加する拡大 K = Q(ζ) である。Kn を 1 の原始 pn+1乗根の生成する K の(したがってとくに C 内の)部分体として、体の塔 Kn (n = 1, 2, ...) の和集合(合成体)を L と置く。
このとき、体の拡大 L/K のガロア群は Γ に同型である。これは、拡大 Kn/K のガロア群が Z/pnZ であることによる。

ここから、ガロア群 Γ 上の興味深い加群を取り出すことができる。岩澤は Kn のイデアル類群と、そのシロー p 部分群 In (p-部分)を考えた。このときノルム写像

Im → In
(ここで m > n)を考えれば逆系が得られ、その逆極限を I として Γ を I に作用させることができる。その作用を記述することに意味があるのである。
(引用終わり)
253
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 14:17:53.33 ID:XX3WYJPV(7/20) AAS
>>248

”単位円の方程式 p^2+q^2=1 の有理数解が
(p,q) = (1,0),(0,i) ,(-1,0),(0,-i)のとき、自明な解ということにする。
ここに、iは虚数単位である。”

ここらの表現も全く拙いね〜
素人表現やね(^^;
281
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 00:40:49.43 ID:c3aU14PB(1/37) AAS
>>274
「Q(i)に含まれる1のべき根は±1,±iの4つだけ」の証明が難しい?
ここは、小学生もいるので、変なことを言わないように、お願いします(^^

命題A: 「Q(i)に含まれる1のべき根は±1,±iの4つだけ」
 ↓↑
命題B:(>>248より)αを cos(απ)=p, sin(απ)=q をみたす実数とすると、(p,q)が、自明な解でないとき αは無理数である

これ成立ですよ! 命題AとBは同値
命題Bが>>248で証明した命題ですよ!

以下、証明します

まず
命題Bを簡明に言い換えると
z= cos(απ) + i sin(απ) =e^(iαπ)とおいて
命題B’:zが単位円の有理点であれば、zの偏角αは無理数である
とします

命題Aを簡明に言い換えると
命題A’: 「Q(i)に含まれる円の等分点は±1,±iの4つだけ」
(円の等分点は、下記 永野哲也先生ご参照 )

1)命題A’→命題B’
証明
背理法を使う。
zが単位円の有理点であるにも関わらず、zの偏角αは有理数であるとする
>>248で示した様に、zは円の等分点になる。これは、命題Aに矛盾する

2)命題B’→命題A’
証明
命題B’より、z= cos(απ) + i sin(απ) が、単位円の有理点であれば、zの偏角αは無理数である
よって、zは円の等分点ではない。従って、Q(i)に含まれる円の等分点は±1,±iの4つだけである
QED

簡単でしょ(^^

http://sun.ac.jp/prof/hnagano/
永野 哲也研 長崎県立大
http://sun.ac.jp/prof/hnagano/houkoku/h26ensyu2-16.html#1602
第16回
(抜粋)
1.円の等分点

zk=cos 2πk/n + i sin 2πk/n (k=1,2,・・・,n)・・・(1)
(∵) z=1から測って、n等分点の最初の点z1の偏角は、1周が2π(=360度)であるので、 2π/n(ラジアン)
である。それ以後のn等分点は、隣の点と角 2π/n(ラジアン)だけ離れているので、
z2の偏角は 2π/n×2(ラジアン)、z3の偏角は 2π/n×3(ラジアン)、・・・、znの偏角は 2π/n×n=2π(ラジアン)となる。

これらは、方程式
 x^n=1
の根である

1の原始n乗根
 上式(1)で、k=1 と2以上のkについては、nと互いに素となるkの複素数zkを1の原始n乗根という
(引用終り)
286
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 09:01:44.91 ID:c3aU14PB(5/37) AAS
>>248 補足
>ところで、円分体の理論より、ζ2nは代数拡大であり、Q(i)の元ではない

>>248の証明では、「Q(i)に含まれる1のべき根は±1,±iの4つだけ」は使っていませんよ!!(^^

ここは、下記の円分多項式の体Q(i)内での既約性を認めてしまえば、
(円分多項式は、下記永野哲也先生ご参照)
難しい議論は不要

証明の荒筋だけ書くと
円分多項式で、f(x) =Φn(x)
と見慣れた記号に直して

例えば、f(ζn)=0とします (ζnは円分体の根)
もし、ζn∈Q(i)なら
f(x) =(x-ζn)g(x) と因数分解できて
(ここに、g(x)=f(x) /(x-ζn) なる多項式です)
Φn(x)の既約性に反する。

多項式で
f(ζn)=0 → f(x) =(x-ζn)g(x) と書けることは、どこにでもある基本事項です
(高校の範囲で、証明もどこにでもありそうですが、省略します)

別に、難しいことは何もない
「円分体のガロア群を計算する」なんて必要はありませんよ(^^

http://sun.ac.jp/prof/hnagano/
永野 哲也研 長崎県立大
http://sun.ac.jp/prof/hnagano/houkoku/h26ensyu2-16.html#1602
第16回
(抜粋)
2.円分多項式
 Φn(x): 1の原始n乗根のみを根にもつ多項式を円分多項式(または円周等分多項式)という。

 定義より以下が正しい。
http://sun.ac.jp/prof/hnagano/image/h26ensyu2-16-5.jpg


http://sun.ac.jp/prof/hnagano/image/h26ensyu2-16-6.jpg

1の8乗根を単位円周上に図示すると以下のような z1、z2、z3、z4、z5、z6、z7、z8 である。

http://sun.ac.jp/prof/hnagano/image/h26ensyu2-16-7.jpg

z1、z3、z5、z7 が1の原始8乗根である。
z4 は原始2乗根、z2、z6 は原始4乗根、z8 はもちろん原始1乗根である。
(引用終り)
297: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 10:56:18.75 ID:c3aU14PB(13/37) AAS
>>248 補足

円分体
1973/74の昔とこの頃ですが
(これ、過去にアップしたかも)
http://www.math.s.chiba-u.ac.jp/~otsubo/article/cyclotomie.pdf
円分 ? 昔とこの頃* アンドレ・ヴェイユ
* Andr´e Weil, La cyclotomie jadis et nagu`ere, S´eminaire BOURBAKI, 26e ann´ee, 1973/74, n
?452, Juin
1974. In: Springer Lecture Notes in Math. 431 (1975), 318-338, ?uvres Scientifiques (全集), Vol. III,
311-327. (大坪紀之による私家版日本語訳, 2012)

http://www.math.s.chiba-u.ac.jp/~otsubo/index-j.html
大 坪 紀 之
千葉大学 大学院理学研究院
数学・情報数理学コース
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s