[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
246
(1): 132人目の素数さん [sage] 2019/02/08(金) 08:50:02.06 ID:XrEX/qI/(2/5) AAS
>γが無理数であったとする。任意の有理数 1/p pは2以上の整数 に対して
>|γ−1/p|=| lim_{n→+∞}( 1+1/2+…+1/n−log(n) )−1/p |
>       =lim_{n→+∞}( 1+1/2+…+1/n−log(n) )−1/p
>       >( 1+1/2+…+1/p−log(p) )−1/p
>       =1+1/2+…+1/(p−1)−log(p)
>       >0、
>従って、或る2以上の正整数kが存在して、p≧k のとき |γ−1/p|>( 1+1/2+…+1/p−log(p) )−1/p>1/k≧1/p。
>故に、0<|γ−q/p|<1/p^2<|γ−1/p| を満たすような既約有理数 q/p p≧2 は無限個存在する。
>(…以下略…)
見直したり他の方向から考えてはみたが、この部分は γ=lim_{n→+∞}( 1+1/2+…+1/n−log(n) ) に特化していた。
ここに、γ_n=1+1/2+…+1/n−log(n) n≧2 は超越数で、n≧2 のとき {γ_n} は下に有界な単調減少列。
γが代数的無理数でないことまでは証明出来たが、ディオファンタス近似ではγの超越性まではいえない。
γの超越性をディオファンタス近似で証明しようとすると、ほぼ自動的にγが超越数であることがいえて一般的に成り立つような証明になる。
やはり、γは有理数だった。
247: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/08(金) 11:33:12.09 ID:XX3WYJPV(1/20) AAS
>>244-246
おっちゃん、どうも、スレ主です。
お元気そうで何よりです。
いつもどおり、おっちゃん節健在ですね
「やはり、γは有理数だった」w(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s