[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
187
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/06(水) 21:22:30.01 ID:C0V9I9pS(8/10) AAS
>>186

関連追加
http://biteki-math.hatenablog.com/entry/2015/04/08/090255
美的数学のすすめ
2015-04-08
円分体のガロア群
円分体 ガロア理論
(抜粋)
 今回は、円分多項式の分解体であるQ(ζn)のガロア群GaL(Q(ζn)/Q)を考えます。

 ガロア理論の初歩については下記をご覧ください。

円分多項式の性質

 このようにGal(Q(ζn)/Q)がアーベル群(可換群)であることが分かりました。類体論の対称は、ガロア群がアーベル群となる体の拡大ですが、円分体はその典型例です。

円分体のガロア群が決定できましたので、次回、円分体の部分体をこのガロア群の部分群から決定してみます。
(引用終り)
188: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/06(水) 21:29:31.98 ID:C0V9I9pS(9/10) AAS
>>187

関連追加
tsujimotterのノートブックは、
以前にも引用させてもらったと思う
これは、大学1〜2年は、ざっと読んでおくと良いと思うよ(^^

http://tsujimotter.hatenablog.com/entry/class-field-theory-of-cyclotomic-field
tsujimotterのノートブック
2017-01-01
円分体の類体論の復習

以上の記事では,整数論にガロア理論を適用させ,素イデアルの分解法則を見出す「ヒルベルトの理論」の枠組みを紹介し,その系として円分体の分解法則を導きました。

上の記事から半年以上経っているので,円分体の類体論を復習しつつ,言い足りなかったことを少し補足したいと思います。

復習するテーマは大きく分けて以下の2つです。
・ガロア拡大における分解法則とフロベニウス
・円分体の素イデアル分解法則

この記事のすぐあとに,続きの記事を書きたいと思っています。今回の記事はそのための準備です。例によって,少々レベルが高い記事になりますが,よかったら合わせて読んでみてください。

復習1:ガロア拡大における分解法則とフロベニウス

補足1:フロベニウス自己同型とアーベル拡大

補足2:アルティン写像と相互法則

復習2:円分体の素イデアル分解法則

まとめ
今回は「円分体の分解法則」だけ紹介しましたが,この流れを踏まえることで「二次体の場合の分解法則」も得ることができます。実はその話がしたくてこの記事を書きました。

一般に,これらは「Q上の類体論」と呼ばれるものですが,これが円分体の分解法則の延長で得られるのです。この辺が円分体が雛形と言われる所以でしょう。

次の記事では,ぜひ円分体のパワーを味わってください!
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.072s