[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
174
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/06(水) 07:54:00.53 ID:C0V9I9pS(5/10) AAS
>>173

つづき

2017825
当たり前のように見えることが本当に当たり前か?という問に関して考え始める。計算を色々やってみて、出来た、と思ったらまだ出来ていない、でコンピューターで計算して計算ミスはないことなど確認と、この繰り返し。夕刻にやっとやっぱり当たり前の結果しか成り立たないことがわかった。途中円分体を考えたり、最大実部分体の正規底を考えたりと、結構大事だったが、良かった。すっきり

2017726
それにしても円分体は面白い。時間があれば Washington の本をじっくり読みたいところだが、
(引用終り)

https://researchmap.jp/read0059180/
researchmap
(抜粋)
研究者氏名
加川 貴章
カガワ タカアキ
URL
http://www.ritsumei.ac.jp/se/%7Ekagawa/
所属
立命館大学
部署
理工学部数理科学科
職名
教授
学位
理学博士(早稲田大学)
その他の所属
立命館大学

学歴
- 1991年
早稲田大学 理工学部 数学
- 1997年
早稲田大学大学院 理工学研究科 数学
(引用終り)
178
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/06(水) 15:59:08.09 ID:QNIYYpOH(3/7) AAS
>>177 追加
ちょっと閃いたね〜w(^^

命題2:sinπ/p not ∈ Q(ζ2p + 1/ζ2p)⊂Q(ζ2p)=Q(ζp)
(略証)
背理法を使う
sinπ/p ∈ Q(ζ2p + 1/ζ2p)⊂Q(ζ2p)=Q(ζp)
が成り立つとする

ζp-1/ζp =2i*sinπ/p∈ Q(ζp)
だから

i = (2i*sinπ/p)/(sinπ/p) ∈ Q(ζp)
となる

そうすると
Q(ζp) = Q(i,ζp) =Q(ζ4p)となる*)
これは、矛盾である
QED

*)注:Q(ζp) = Q(i,ζp) =Q(ζ4p)の矛盾を示すところで
円分体の大定理(>>176)を使うというのが、結構大げさなんだけどね(^^;
まあ、昔受験時代に読んだ、「大学への数学」でよく言われたのが
「牛刀を用いてニワトリを割く」という言葉なんだけど
(当時は、大学で扱う大定理の系として、問題を解くみたいな使い方だったと思ったが)
まあ、この問題では、円分体の理論との結びつきという意味で、一番見通しがいいかもね

円分体の大定理の証明? それは私の手に余るので、加川貴章先生(>>173-174)へどうぞ
まあ、どこか探せば、PDFが落ちていると思うし、教科書とかにも載ってそうです
(高木の整数論とかにないかな (これは持ってないんだが)?(^^; )

http://www.kokin.rr-livelife.net/koto/koto_ki/koto_ki_4.html
ことわざ図書館
(抜粋)
牛刀をもって鶏を割くぎゅうとうをもってにわとりをさく
「鶏を割くに焉んぞ牛刀を用いん」ともいう。
小事を処理するのに、大掛かりな手段を用いることのたとえ。
180: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/06(水) 16:05:20.07 ID:QNIYYpOH(5/7) AAS
>>178
>円分体の大定理の証明? それは私の手に余るので、加川貴章先生(>>173-174)へどうぞ

加川ゼミでこれやると、「証明は?」と言われて、
黒板ハリツケの刑で、私は立ち往生ですね (^^
184
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/06(水) 21:00:04.37 ID:C0V9I9pS(6/10) AAS
>>174
>それにしても円分体は面白い。時間があれば Washington の本をじっくり読みたいところだが、

下記の”[10] L. C. Washington, Introduction to cyclotomic elds, 2-nd edition, GTM 87, Springer (1997).”だろうかね(^^
https://www.cck.dendai.ac.jp/math/~t-hara/ss2014/
第22回 (2014年度) 整数論サマースクール 『非可換岩澤理論』 2014.8.28?2014.9.1
世話係
原 隆 (東京電機大学)
水澤 靖 (名古屋工業大学)
https://www.cck.dendai.ac.jp/math/~t-hara/ss2014/abstracts.html
講演内容
https://www.cck.dendai.ac.jp/math/~t-hara/ss2014/pdf/fujii.pdf
講演レジュメ
可換拡大の岩澤理論の代数的側面について 藤井 俊 (金沢工業大学)
本講演では、まず導入として岩澤理論の起源である Zp 拡大の一般論を解説し、後の講演で用いられる概念、用語の紹介を行う。

次いで、非可換岩澤理論で扱われる「分岐付岩澤加群」が、どのような文脈で岩澤理論に現れるのかについて解説をする。

本稿の構成は,
・2 章: Zp 拡大の一般論
・3 章: 円分Zp 拡大上のKummer 理論, イデアル類群と分岐付岩澤加群
となっている. 2 章はWashington の本[10] の13 章の内容の解説である. 3 章は, 岩澤先生
の論文[7] の前半部分の(簡易な) 解説である. 論文[7] では, Kummer 理論のすべての部分を
扱っているが, 本稿ではプラス部分に限定をして話を進める.
[10] L. C. Washington, Introduction to cyclotomic elds, 2-nd edition, GTM 87, Springer (1997).

On algebraic aspects of Iwasawa theory for abelian extensions

Satoshi Fujii (Kanazawa Institute of Technology)

In this lecture I will first explain general theory on Zp-extensions of algebraic number fields, which is the origin of Iwasawa theory. Then I introduce several concepts and terminologies concerning it which shall be used throughout this lecture series.

Under these preparations I would like to introduce the notion of the “Iwasawa module with ramification,” and explain how this notion appears in the classical Iwasawa theor
284
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/09(土) 08:34:51.72 ID:c3aU14PB(3/37) AAS
>>174
>それにしても円分体は面白い。時間があれば Washington の本をじっくり読みたいところだが、

円分体 Washington の本は、下記ですね。間違いなし(^^
(Fermat's Last Theorem関連の一部のみ引用しておきます)
https://en.wikipedia.org/wiki/Cyclotomic_field
Cyclotomic field
(抜粋)
Relation with Fermat's Last Theorem
A natural approach to proving Fermat's Last Theorem is to factor the binomial x^n + y^n, where n is an odd prime, appearing in one side of Fermat's equation

x^n + y^n = z^n
as follows:

x^n + y^n = (x + y)?(x + ζy)?…?(x + ζn???1y).
Here x and y are ordinary integers, whereas the factors are algebraic integers in the cyclotomic field Q(ζn). If unique factorization of algebraic integers were true, then it could have been used to rule out the existence of nontrivial solutions to Fermat's equation.

Kummer found a way around this difficulty.
He introduced a replacement for the prime numbers in the cyclotomic field Q(ζp), expressed the failure of unique factorization quantitatively via the class number hp and proved that if hp is not divisible by p
(such numbers p are called regular primes) then Fermat's theorem is true for the exponent n = p.
Furthermore, he gave a criterion to determine which primes are regular and using it, established Fermat's theorem for all prime exponents p less than 100, with the exception of the irregular primes 37, 59, and 67.
Kummer's work on the congruences for the class numbers of cyclotomic fields was generalized in the twentieth century by Iwasawa in Iwasawa theory and by Kubota and Leopoldt in their theory of p-adic zeta functions.

つづく
516: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/10(日) 21:23:04.00 ID:6AF3LOKJ(8/13) AAS
>>475
>円分体の高度な理論のコピペやpdfを貼って蘊蓄をたらたら語りながら
> 1のべき根の意味さえ誤解してたバカっぷりには呆れた

円分体と1のべき根の意味とは、表裏一体でしょ?(^^

加川研>>174 より
>それにしても円分体は面白い。時間があれば Washington の本をじっくり読みたいところだが

立命館 数理科学科 教授が、「じっくり読みたい」と言われる(^^

>>173 より
>ノイキルヒのゼミ。で今は Q(ζn) の整数環が Z[ζn] であることの証明だったが、n が素数の冪の場合で沈没したらしく、「一般の場合は来週にします」とのことだった。
>で40分くらいで終了。円分体の整数環の決定って、何でこんなに難しいんだろう?そもそも [Q(ζn):Q]=φ(n) であることも、一般の場合は実に難しい。

これ読むと、まあ、おれなんか
怖じ気づいてしまうよね〜(^^
で、まあ、せめて>>114の円分体くらいは、齧り付いてみようとしたわけです、はい(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s