[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
158
(3): 132人目の素数さん [sage] 2019/02/05(火) 19:15:13.78 ID:ymaflZ3n(2/2) AAS
>問1 cos(π/n)∈Q(sin(π/n)) 

cos((n-1)π/n)=-cos(π/n)
でnが奇数ならn-1=2mと表せて
cosの2m倍角公式がsinだけで書ける
ことを使えばいいんじゃね?

>問2 sin(π/n)はQ(cos(π/n))には含まれない

逆はちと難しいな
sinの2m倍角公式がcosだけでは書けない
といえばいいんだろうけど
159
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/05(火) 21:18:35.33 ID:YkzLfObS(7/8) AAS
>>158
>cosの2m倍角公式がsinだけで書ける
>ことを使えばいいんじゃね?

おお、なるほどね〜(^^
cos((n-1)π/n)=cos(2mπ/n)
π/n:=θとして
cos(2mθ)= 1-2(sin(mθ))^2 =1-2Sm((sinθ)^2)
ここに、Smは、下記のm 次の spread 多項式か

なるほどね(^^;
うまいね〜(^^
ザブトン1枚!

https://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE%E5%85%AC%E5%BC%8F%E3%81%AE%E4%B8%80%E8%A6%A7
三角関数の公式の一覧
(抜粋)
倍角・三倍角・半角の公式
cos2θ = 1-2(sinθ)^2
倍角公式
Sn は n 次の spread 多項式
(sin(nθ))^2 =Sn((sinθ)^2)
171
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/06(水) 07:34:23.12 ID:C0V9I9pS(2/10) AAS
>>160 追加

ようやく、問題の構造が分った〜!(^^

下記「Q(ζm)∩R}= Q(ζm+1/ζm) である。このQ(ζm+1/ζm)を、最大実部分体または実円分体という。」で
最大実部分体 or 実円分体 が、キーワードやね
これで、検索すると、いろいろヒットするね

それは、ともかく
Q(cosπ/p)=Q(ζ2p + 1/ζ2p)⊂Q(sinπ/p)⊂Q(ζ4p + 1/ζ4p)

という構造なんやね
で、Q(ζ2p + 1/ζ2p)と⊂Q(ζ4p + 1/ζ4p)の二つが、円分体の”最大実部分体または実円分体”だと(^^

で、sinπ/pは、Q(cosπ/p)=Q(ζ2p + 1/ζ2p)の外(含まれない)
だと、それを示せば良いのだ

なお、Q(sinπ/p)=Q(ζ4p + 1/ζ4p)なのでしょうね、多分

Q(cosπ/p)=Q(ζ2p + 1/ζ2p)⊂Q(sinπ/p)は、>>158-159で終わったが
”sinπ/pは、Q(cosπ/p)=Q(ζ2p + 1/ζ2p)の外(含まれない)”の細部の証明が、まだ示せないスレ主でした(^^;

https://ja.wikipedia.org/wiki/%E5%86%86%E5%88%86%E4%BD%93
円分体
(抜粋)
性質
・Q(ζm)∩R}= Q(ζm+1/ζm) である。このQ(ζm+1/ζm)を、最大実部分体または実円分体という。
(引用終り)
以上
523
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/11(月) 00:00:44.35 ID:qyW7buAe(1/40) AAS
>>522

つづき

で、これを因数分解で見ると
x^4p - 1
=(x^2p - 1)(x^2p + 1)
=(x^p - 1)(x^p + 1)(x^2p + 1)
=0

x^p = 1 から、ζpがでる
x^p = - 1 から、- 1=e^πi を使ってζ2pがでるが、Q(ζp)= Q(ζ2p)
x^2p = - 1 から、- 1=e^πi を使ってζ4pがでる

体の拡大の次数は
|Q(ζp):Q|=p-1
|Q(ζ2p):Q|=p-1
|Q(ζ4p):Q|=2(p-1)

|Q(ζp)∩ R:Q|=|Q(ζ2p)∩ R:Q|=(p-1)/2
|Q(ζ4p)∩ R:Q|=p-1

>>114
問1:cos(π/n)∈Q(sin(π/n)) の証明は、
>>158-159の通りで、
「nが奇数ならn-1=2mと表せてcosの2m倍角公式がsinだけで書ける」(spread 多項式 Smを使う)ことから従う
問2:sinπ/p not ∈ Q(ζ2p + 1/ζ2p)⊂Q(ζ2p)=Q(ζp)の略証は、>>178に書いた通り

あと残っているのは
”Q(sinπ/p) = Q(ζ4p)∩ R ”が成り立つはずなのだが・・、
まだ示せていない(^^;

追伸
なお、ここらの式変形やテクニックは、円分体やガロア理論では頻出だったよね、確か(^^;
まあ、ガウスなら秒殺で浮かぶだろうことが、鈍才のスレ主は、思いだしながら1週間くらいかかったよ(^^

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s