[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
148(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:51:11.04 ID:T/njRROM(6/13) AAS
>>147
つづき
https://ja.wikipedia.org/wiki/%E5%8E%9F%E5%A7%8B%E5%85%83%E5%AE%9A%E7%90%86
原始元定理
(抜粋)
体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。
存在の主張
定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。ガロワの時代から、原始元の役割は分解体をただ1つの元で生成されるものとして表現することだった。そのような元のこの(任意の)選択は Artin の扱いにおいて避けられる[1]。同時に、そのような元の構成の考慮は退く:定理は存在定理 になる。
すると以下のアルティンの定理は古典的な原始元定理に取って代わる。
(引用終わり)
以上
149(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:31:29.71 ID:T/njRROM(7/13) AAS
>>148 補足
>定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。
倉田本の最後の方だったかに、
この話(”定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった”)に触れているところがあったな
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E7%90%86%E8%AB%96
ガロア理論
(抜粋)
関連文献
・倉田令二朗 『ガロアを読む 第?論文研究』 日本評論社、2011年7月(原著1987年7月)。ISBN 978-4-535-78158-0。 - 2011年に復刊した。
http://math.artet.net/?eid=1422098
TETRA'S MATH 数学と数学教育
ガロア理論のどこまで納得していて、何に煮詰まっていて、これからどうしたいのか(2)
[2017年6月27日/記事の一部を削除・修正しました]
2013.11.13 Wednesday
(抜粋)
いま手元に倉田令二朗さんの『ガロアを読む---第1論文研究』があります。1ページめからすでにびっくりなのですが(「多項式」というセクションタイトルで、ニュートン-ライプニッツ以来の果てしない困難を回避するところから話が始まるその雰囲気にちょっとびっくりした)、私にとってはやはり、最後の最後のページ(p.214)が印象的でした。
1987年に倉田令二朗さんがいうところの、古典研究の困難と、2つの断絶。
さらにわが国での数学状況,エートスはさまざまな古典との断絶がある.たとえばブルバキズムでは過去の数学は原則として現代数学に包摂されるという判断があり,この見地から書かれる教科書が多い.たとえばガロアの理論はそれがもともと方程式論であったことすら理解不可能であるようなやり方で体の一般論の基本定理の一つとしてえがかれる.
第二の断絶は高校数学と18,19世紀の数学ないしは現代数学との断絶である.
そして最後の2行はこうなっています↓
なお「古典」という場合,私はゲーデル,コーエン(そして故あって)グロタンディエクもふくめている.
さらに、序論の「謝辞」に、またまた亀井哲治郎さん(当時、『数学セミナー』の編集長)のお名前を発見。
(引用終わり)
つづく
154: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 14:03:36.62 ID:T/njRROM(12/13) AAS
>>148
余談だが
「原始元定理」というのは、英語wikipediaからの直訳語かな?
私の見た範囲のいくつかの教科書では
うろ覚えだが、
”単項拡大”みたいに書いてあったと思ったが(^^;
で、最小多項式につながる
https://ja.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E5%A4%9A%E9%A0%85%E5%BC%8F_(%E4%BD%93%E8%AB%96)
最小多項式 (体論)
(抜粋)
数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。
元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。
E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。
集合 Jα は F[x] のイデアルであるからそのように名づけられている。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s