[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
133
(2): 132人目の素数さん [sage] 2019/02/05(火) 07:16:45.73 ID:VAkhjfr2(3/3) AAS
円分体の理論は相対アーベル拡大の理論として一般化され類体論となったのだが
それで円分体固有の性質がすべて説明されたわけではなかった。
岩澤健吉は20世紀の中盤になって円分体の研究を進め
岩澤理論という驚異的な構造を見い出した。
最近では一元体の理論と関係するなど、円分体にはまだ残されているものがあるかもしれない。
134
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/02/05(火) 07:44:21.15 ID:YkzLfObS(5/8) AAS
>>131-133
ありがとう

これ、被っているかも知れないが
>>116
つづき

数学雑記さん(>>114)は、sin2π/p=cos{2π(4-p)}/4pであることを利用し
ζ4pを使っている
ζ4p=e^(2πi/4p)=cos(2π/4p)+i*sin(2π/4p)
ζ4p=e^(πi/2p)=cos(π/2p)+i*sin(π/2p)

なので、
cos(π/2p)∈ Q(ζ4p)
i*sin(π/2p)∈ Q(ζ4p)
(直ちに、-{sin(π/2p)}^2∈ Q(ζ4p) |蛇足だが実数化した)

で、倍角公式で
cos2θ=cos^2θ-sin^2θ、sin2θ=2sinθcosθ
を使うと

cos(π/p)∈ Q(ζ4p)
sin(π/p)∈ Q(ζ4p)
が分る
(cos(π/p)∈ Q(ζ4p)の方は、cos(π/p)∈ Q(ζ2p)から自明ですけどね)

で、Q(sin(π/p))⊂ Q(ζ4p) が示せた
これをベースに、>>114
問1 cos(π/p)∈Q(sin(π/p)) 
問2 sin(π/p)はQ(cos(π/p))には含まれない
については、 Q(ζ4p)、Q(ζ2p)、Q(sin(π/p))とQ(cos(π/p))の関係を見て行けば良い
つまり、円分体の理論が即つかえる
それを、具体的に実行しているのが、
数学雑記さん(>>114http://fjmttty.hatenablog.com/entry/2017/08/05/202216
なのですね(^^

細かくは、また後で

https://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE%E5%85%AC%E5%BC%8F%E3%81%AE%E4%B8%80%E8%A6%A7
三角関数の公式の一覧

つづく
144
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:02:17.08 ID:T/njRROM(2/13) AAS
>>133
>岩澤健吉は20世紀の中盤になって円分体の研究を進め
>岩澤理論という驚異的な構造を見い出した。

行きつけの書店で、ふと見かけたのが、
下記の「重点解説 岩澤理論」で、雑誌となっているが、ムックみたいな本なんだ
それで、その書店は、数学の専門書皆無の一般向けなので、「あれ?」と思ったのだが、手に取って、斜め読みしてきた(^^

記憶に残っているのは、L関数の当りくらいだが・・(^^;
”ああ、これが、かの有名な岩澤理論か”と、眺めました〜(^^
私にはむずいが、分かりやすく書かれている印象でしたね

https://www.amazon.co.jp/dp/B07MKGMWVK/ref=sr_1_1?ie=UTF8&qid=1549331499&sr=8-1&keywords=%E5%B2%A9%E6%BE%A4%E7%90%86%E8%AB%96
重点解説 岩澤理論 2019年 01 月号 [雑誌]: 数理科学 別冊 雑誌 ? 2019/1/26 出版社: サイエンス社
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s