[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
273: 132人目の素数さん [sage] 2019/02/08(金) 19:38:01.45 ID:rawv4ykn(1/3) AAS
この程度の簡単な証明でも、自分の知性だけを頼りに正しさが確かめられないひとは大変ですね。
数学やってて楽しんでしょうか?
274(1): 132人目の素数さん [sage] 2019/02/08(金) 19:46:59.55 ID:rawv4ykn(2/3) AAS
証明に一箇所「ちゃんと証明すると結構大変」なことがあって
それこそ「Q(i)に含まれる1のべき根は±1,±iの4つだけ」
ということで、それは円分体のガロア群を計算することもほぼ同じ原理ですが
その根本的なところをスレ主は押さえていない。
ま、教えませんけどw
円分体(1のべき根の体)のことを滔々と語りながら
1のべき根が何かも知らなかったひとに何を言っても無駄でしょう...
276: 132人目の素数さん [sage] 2019/02/08(金) 20:08:27.25 ID:rawv4ykn(3/3) AAS
>>230
>>Q(x)とQ(√(1-x^2))の間に包含関係がない
>やっぱり難しい・・・
√(1-x^2)は有理函数ではない、これはよろしいでしょう?
代数的に書くとCを複素数体とすると
√(1-x^2)\not∈C(x)ですが
当然、√(1-x^2)\not∈Q(x).
xと√(1-x^2)を入れ替えても"双対"なので
x\not∈Q(√(1-x^2)).
論理的に面白いのは、超越数ξ,不定元xに対して
Q(ξ) 同型 Q(x)ということですかね。
体をCまで拡げてしまうとC(ξ)=C
ですから、当然函数体とは同型になりませんけど。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s