[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む60 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
143(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:00:07.26 ID:T/njRROM(1/13) AAS
うんこレス流すよ (^^
144(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:02:17.08 ID:T/njRROM(2/13) AAS
>>133
>岩澤健吉は20世紀の中盤になって円分体の研究を進め
>岩澤理論という驚異的な構造を見い出した。
行きつけの書店で、ふと見かけたのが、
下記の「重点解説 岩澤理論」で、雑誌となっているが、ムックみたいな本なんだ
それで、その書店は、数学の専門書皆無の一般向けなので、「あれ?」と思ったのだが、手に取って、斜め読みしてきた(^^
記憶に残っているのは、L関数の当りくらいだが・・(^^;
”ああ、これが、かの有名な岩澤理論か”と、眺めました〜(^^
私にはむずいが、分かりやすく書かれている印象でしたね
https://www.amazon.co.jp/dp/B07MKGMWVK/ref=sr_1_1?ie=UTF8&qid=1549331499&sr=8-1&keywords=%E5%B2%A9%E6%BE%A4%E7%90%86%E8%AB%96
重点解説 岩澤理論 2019年 01 月号 [雑誌]: 数理科学 別冊 雑誌 ? 2019/1/26 出版社: サイエンス社
145(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:03:38.17 ID:T/njRROM(3/13) AAS
>>144 追加
https://ja.wikipedia.org/wiki/%E5%B2%A9%E6%BE%A4%E7%90%86%E8%AB%96
(抜粋)
数論における岩澤理論(いわさわりろん、Iwasawa theory)は、岩澤健吉が円分体の理論の一部として創始した、(無限次元拡大の)ガロア群の、イデアル類群における表現論である。
目次
1 Zp-拡大
2 円分拡大の数論
3 岩澤主予想
4 逸話
Zp-拡大
岩澤が端緒としたのは、代数的数論において Zp 拡大と呼ばれる、そのガロア群が p-進整数環の加法群 Zp と同型となるような体の塔(拡大列)の存在性である。
このガロア群は理論中しばしば Γ と書かれ、(アーベル群ではあるが)乗法的に記される。このような群は、(そのガロア群が本質的に射有限群であるような)無限次元代数拡大のガロア群の部分群として得られる。
この群 Γ それ自身は、ある素数 p を固定したときの、加法群 Z/pnZ (n = 1, 2, ...) たちが自然な射影によって成す逆系の逆極限(Z の射有限完備化)である。これはまた、ポントリャーギン双対を考えれば、任意の p の冪に対する 1 の冪根全体が成す円周群の離散部分群の双対として得られるコンパクト群が Γ であるとも述べられる。
円分拡大の数論
最初の重要な例は、1 の原始 p 乗根 ζ を添加する拡大 K = Q(ζ) である。Kn を 1 の原始 pn+1乗根の生成する K の(したがってとくに C 内の)部分体として、体の塔 Kn (n = 1, 2, ...) の和集合(合成体)を L と置く。このとき、体の拡大 L/K のガロア群は Γ に同型である。
(引用終わり)
146: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:04:27.50 ID:T/njRROM(4/13) AAS
>>145
追加の追加PDF下記
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/kokyuroku.html
京大 数理解析研 講究録
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/1998.html
RIMS Kokyuroku published in 1998
No. 1023-1073
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/1026.html
No.1026 代数的整数論とその周辺
Algebraic Number Theory and Related Topics
研究集会報告集
1997/10/27〜1997/10/31
伊原 康隆
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1026-4.pdf
4. 岩澤理論入門(代数的整数論とその周辺) 東京大学 中島 匠一 1998
147(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:50:17.17 ID:T/njRROM(5/13) AAS
>>134 追加
スレ59 2chスレ:math
を、ご参照
数学雑記さん(>>114)http://fjmttty.hatenablog.com/entry/2017/08/05/202216
が、解答の中でやっているのが
ヒント、”sin2π/p =(cos{2π/p-π/2}) =cos{2π(4-p)}/4p” に注意してなんだけど
ζ4p^(4-p)+ζ4p^-(4-p)で、”sin2π/p=cos{2π(4-p)}/4p”を使っているのですね
分かりやすく書くと
ζ4p^(4-p)+1/ζ4p^(4-p) = 2cos{2π(4-p)}/4p=2sin2π/p
ってことなのですが
で、左辺の{ζ4p^(4-p)+1/ζ4p^(4-p)}を使って、
Q(sin2π/p)を考えようというのが
数学雑記さんの解答で書かれていることですね
gcd(4p,k)=1とか、gcd(4p,4-p)=1とかは、
{ζ4p^(4-p)+1/ζ4p^(4-p)}を使って拡大体を構成するときの、注意点だったと思った
拡大体を、ベクトル空間とみて、基底を定める。そのときに、原始元がすぐ見つかるといい
{ζ4p^(4-p)+1/ζ4p^(4-p)}が、原始元であれば、うれしいと(^^
(下記をご参照)
細かいところが、再現できないのが、残念ですが(^^
(もうちょっと、カンニングすれば、思い出せそうですが・・)
院試でも受けようという人は、ここは再現できないといけませんよね(^^;
http://hooktail.sub.jp/algebra/ExtensionField/
物理のかぎしっぽ
拡大体
(抜粋)
体 F の拡大体 E は, F 上のベクトル空間になっています.
https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E6%8B%A1%E5%A4%A7
有限拡大
(抜粋)
数学、より正確にはガロワ理論に際して代数学において、有限拡大 (仏: extension finie) は次数有限の体の拡大である、すなわち、体 K の拡大可換体であって、K-ベクトル空間として次元が有限のものである。そのような拡大はつねに代数的である。
動機付け
線型代数学と同様、ガロワ理論は有限次元の方が無限次元よりもはるかに簡単である。原始元の定理は例えばすべての代数体、すなわち有理数体 Q のすべての有限拡大は単拡大であることを保証する。
つづく
148(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 11:51:11.04 ID:T/njRROM(6/13) AAS
>>147
つづき
https://ja.wikipedia.org/wiki/%E5%8E%9F%E5%A7%8B%E5%85%83%E5%AE%9A%E7%90%86
原始元定理
(抜粋)
体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。
存在の主張
定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。ガロワの時代から、原始元の役割は分解体をただ1つの元で生成されるものとして表現することだった。そのような元のこの(任意の)選択は Artin の扱いにおいて避けられる[1]。同時に、そのような元の構成の考慮は退く:定理は存在定理 になる。
すると以下のアルティンの定理は古典的な原始元定理に取って代わる。
(引用終わり)
以上
149(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:31:29.71 ID:T/njRROM(7/13) AAS
>>148 補足
>定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。
倉田本の最後の方だったかに、
この話(”定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった”)に触れているところがあったな
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E7%90%86%E8%AB%96
ガロア理論
(抜粋)
関連文献
・倉田令二朗 『ガロアを読む 第?論文研究』 日本評論社、2011年7月(原著1987年7月)。ISBN 978-4-535-78158-0。 - 2011年に復刊した。
http://math.artet.net/?eid=1422098
TETRA'S MATH 数学と数学教育
ガロア理論のどこまで納得していて、何に煮詰まっていて、これからどうしたいのか(2)
[2017年6月27日/記事の一部を削除・修正しました]
2013.11.13 Wednesday
(抜粋)
いま手元に倉田令二朗さんの『ガロアを読む---第1論文研究』があります。1ページめからすでにびっくりなのですが(「多項式」というセクションタイトルで、ニュートン-ライプニッツ以来の果てしない困難を回避するところから話が始まるその雰囲気にちょっとびっくりした)、私にとってはやはり、最後の最後のページ(p.214)が印象的でした。
1987年に倉田令二朗さんがいうところの、古典研究の困難と、2つの断絶。
さらにわが国での数学状況,エートスはさまざまな古典との断絶がある.たとえばブルバキズムでは過去の数学は原則として現代数学に包摂されるという判断があり,この見地から書かれる教科書が多い.たとえばガロアの理論はそれがもともと方程式論であったことすら理解不可能であるようなやり方で体の一般論の基本定理の一つとしてえがかれる.
第二の断絶は高校数学と18,19世紀の数学ないしは現代数学との断絶である.
そして最後の2行はこうなっています↓
なお「古典」という場合,私はゲーデル,コーエン(そして故あって)グロタンディエクもふくめている.
さらに、序論の「謝辞」に、またまた亀井哲治郎さん(当時、『数学セミナー』の編集長)のお名前を発見。
(引用終わり)
つづく
150: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:32:22.83 ID:T/njRROM(8/13) AAS
>>149
つづき
(あんまり関係ないけど、ご参考(^^ )
http://www.saiensu.co.jp/?page=book_details&ISBN=ISBNsgc-27
http://www.saiensu.co.jp/preview/2018-978-4-7819-9951-7/SDB42_sample.pdf
(見本)
SGCライブラリ 27
臨時別冊・数理科学2003年9月
「ガロア理論」〜 その標準的な入門 〜
中野 伸(学習院大学教授) 著
定価:1,933円(本体1,790円+税)
発行:サイエンス社
発行日:2003-09-22
151: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:33:55.63 ID:T/njRROM(9/13) AAS
>>144 タイポ訂正(流しついでに)
記憶に残っているのは、L関数の当りくらいだが・・(^^;
↓
記憶に残っているのは、L関数の辺りくらいだが・・(^^;
152(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:41:20.76 ID:T/njRROM(10/13) AAS
>>147 タイポ訂正(これも流しついでに(^^ )
ζ4p^(4-p)+1/ζ4p^(4-p) = 2cos{2π(4-p)}/4p=2sin2π/p
↓
ζ4p^(4-p)+1/ζ4p^(4-p) = 2cos{2π(4-p)}/4p=2sin2π/4p=2sinπ/2p
Q(sin2π/p)を考えようというのが
↓
Q(sinπ/p)を考えようというのが
153(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 13:42:35.47 ID:T/njRROM(11/13) AAS
>>152
余談だが
タイポも試験だと、減点だから、気を付けようね(^^;
154: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 14:03:36.62 ID:T/njRROM(12/13) AAS
>>148
余談だが
「原始元定理」というのは、英語wikipediaからの直訳語かな?
私の見た範囲のいくつかの教科書では
うろ覚えだが、
”単項拡大”みたいに書いてあったと思ったが(^^;
で、最小多項式につながる
https://ja.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E5%A4%9A%E9%A0%85%E5%BC%8F_(%E4%BD%93%E8%AB%96)
最小多項式 (体論)
(抜粋)
数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。
元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。
E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。
集合 Jα は F[x] のイデアルであるからそのように名づけられている。
156: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/02/05(火) 18:16:13.46 ID:T/njRROM(13/13) AAS
>>155
おっちゃん、どうも、スレ主です。
レスありがとう(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s