[過去ログ] 【統計分析】機械学習・データマイニング20 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
638: (ワッチョイ 9fda-aQox) 2018/10/03(水)00:45 ID:+7Euz2g60(1/5) AAS
あぁカンファで同時にsota報告が上がってたんだな
そりゃカンファで採択されるかされないかと
オープンアクセスサイトでの論文公開タイミングは、ものによってはちげーから
いくら先端追ってる連中でも被るのは仕方ない
・GAN的な双方向マルチ学習(自然言語で言うなら敵対的逆翻訳のしあいっこ?)
・特徴に時間間隔とポジション付与
・Attentionの構造改善
この3つが大体の今のトレンドだろ
全部組み合わせたのも半年以内に出てくるだろうけど
結局の所、事象における連続した時間情報の把握と
その状態における時間変化率の学習が上手く出来てないから汎用AIにはなれんだろう
ちゃんとした学者にも俺と似たような事言ってる人いて
脳構造の模倣による時間情報の学習を、哲学的な部分からやろうって言ってる人いるけどどうなるかな
650(1): (ワッチョイ 9fda-aQox) 2018/10/03(水)13:20 ID:+7Euz2g60(2/5) AAS
CSなんて結局は計算能力との兼ね合いだからな
仮に完全に脳構造を模倣したモデルを組み上げたとしても
それがクソ重くて現行の計算資源で回らなけりゃクソだとしか評価されん
かといって脳構造の模倣や考察を放棄するのは適切じゃない
世界モデルもこっちよりだし、強化学習をやるためには避けられないだろう
問題はRNN,LSTMでは事象における連続した時間情報をあまり学習できてないってことだな
TransformerとUTは時間間隔をと位置情報を特徴に埋め込む事で
マルチヘッドセルフattentionにそれらを処理させているが
おそらくは完璧を求めると
階層的にAttentionによる時間情報とポジション付与をしつつ、それらを考慮したCNNで畳み込み
なおかつそれらすべての層を参照しながら、動的に再帰的処理する必要性がある
これにGAN的な世界モデルによる強化学習手法を取り入れれば汎用AIができるだろう
計算力はどうせなんとかなるだろうし
誰かが気づけば、あと10数年で汎用AI完成するんじゃね
651: (ワッチョイ 9fda-aQox) 2018/10/03(水)13:29 ID:+7Euz2g60(3/5) AAS
そもそも脳構造の哲学的推測における模倣はイメージじゃなくて
ただの論理的思考なんだけど
推測の過程において論理が飛躍しすぎてると
大抵の人は妄想だと判断して、考察を放棄する傾向があるからしょうがないわな
それが当たり前だもの
661: (ワッチョイ 9fda-aQox) 2018/10/03(水)19:13 ID:+7Euz2g60(4/5) AAS
結果あるなら論文書いてarxivに投稿すりゃいいじゃん
高校生ですらMLの論文書いて投稿してたの昨年話題になったろ
671(2): (ワッチョイ 9fda-aQox) 2018/10/03(水)21:59 ID:+7Euz2g60(5/5) AAS
そもそも、ある程度iter重ねるか、少数サンプルで訓練した結果をプロットしつつ
新しいモデルを模索してくのが、今のMLにおける超大多数の手法であって
最初から論理的組み立て部分で有効性を実証してから研究始めるなんて手法は
明らかにメジャーではない
取り敢えず予測モデルで雑なコーディングして、訓練結果をプロットしてみてから
数理モデルの有効性に論理的説明をつけるって手法がメインなのは
有用な結果を残してる論文の内容からも分かる話
ほとんどだーれも論理的説明を完璧に付けてから研究開始なんざしてない
+58IDnbydの論理展開を適用すると、全員滑稽になっちまわないか?
そういう意味で、既に有効性の確認されている脳っていうクソ速いモデルを模倣するっていうのは
その時点である程度の論理的根拠を示しているとすら言える
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s