純粋・応用数学・数学隣接分野(含むガロア理論)21 (217レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
188(1): 07/27(日)20:39 ID:BtC8baTp(24/27) AAS
>>185
>こちらの式の問題点は、>>177に指摘の通りで ”「x は無限集合である」という命題を M(x) とし”の部分であって
>ここを きちんと 集合の言葉で書けるかどうか? そこが問題です
なんとか先生のφ(x)を使え
>この二つの式は、明らかに異なりますね
>前者1)は、無限集合 a の 「冪集合」P (a) を経由して 自然数全体の集合 ωを定義しようとするのですが
x ∈P(a)のxって何?aの部分集合だろ?
>後者2)は、明らかに 「冪集合」P (a) は 経由していない から 本質的に別の式だね
x⊂Aのxって何?Aの部分集合だろ?
同じじゃねーかw 君、べき集合知らないの? 部分集合知らないの? どこまでバカなん?
>また、自然数の集合Nが きちんと集合論として定義されているかどうか?
>特に 本来の自然数以外の(以上の)元を 含んでしまっていないか?
だからN=ωは証明済みだからNがそうならなんとか先生のωもそうだと何度言わせるの? 言葉が通じないの? 言語障害?
194(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/27(日)23:58 ID:6EVaf5Z4(8/8) AAS
>>188
ふっふ、ほっほ
踏みつけたゴキブリ、しぶといなぁ〜、まだ動いているよw ;p)
(引用開始)
>こちらの式の問題点は、>>177に指摘の通りで ”「x は無限集合である」という命題を M(x) とし”の部分であって
>ここを きちんと 集合の言葉で書けるかどうか? そこが問題です
なんとか先生のφ(x)を使え
(引用終り)
「x は無限集合である」という命題が M(x)だというが
言葉で書けば簡単だが、”無限”という用語は使えないよ
”無限”という用語を使わずに
「x は無限集合である」という意味を 集合の言葉として M(x)を どう書けばいいのか?
それが、問題だ by ハムレット
なお
『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}(Aは無限公理により存在する集合を任意に選んだもの』>>185
において
下記の ja.wikipedia 順序数の大小関係 を借用して
A={0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))}
を考えよう
x1={0, 1, 2, 3, ............, ω, S(ω)}
x2={0, 1, 2, 3, ............, ω, S(ω), S(S(ω))}
x3={0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))}
このとき、xi⊂A |i=1,2,3 だから
∩(i=1〜3) xi={0, 1, 2, 3, ............, ω, S(ω)}
となる
N≠∩(i=1〜3) xi
ですよ
つまり、自然数Nに余計な ω, S(ω) が入りましたw ;p)
なので、『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}』このままでは
自然数Nの規定としては、ちょっとまずい
で、記号∩ なんて、メンドクサイものを使うのをやめれ
>>115 仏語 Axiome de la réunion、英語 Axiom of union
>>153 渕野 昌先生、>>62 Akito Tsuboi 筑波大
みんな 記号∩は 使わないぞw ;p)
(参考)
外部リンク:ja.wikipedia.org
順序数
順序数の大小関係
・α が順序数のとき、S(α) ≔ α ∪ { α } は α より大きな順序数のうちで最小のものである。S(α) を α の後続者 (successor of α)と呼ぶ
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.021s