フェルマーの最終定理の証明 (648レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
640: 08/17(日)10:34 ID:ie59VeEu(1/3) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
641: 08/17(日)10:34 ID:ie59VeEu(2/3) AAS
y^''+3y^'+2y=x
(D^2+3D+2)y=x
D^2+3D+2=(D+2)(D+1)=0 D=-2, D=-1
y_0=C_1 e^(-2x)+C_2 e^(-x)
(D+2)(D+1) y_s=x
となるようなy_s を求める。
y_s=1/(D+2)(D+1) x=1/((D+2) ) 1/((D+1) ) x
=1/((D+2) ) 1/((D-(-1)) ) x=1/(D+2) e^(-x) 1/D e^x x
=1/(D+2) e^(-x) ∫▒〖e^x x〗 dx=1/(D+2) e^(-x) (e^x x-∫▒e^x dx) (e^x )^'=e^x
=1/(D+2) e^(-x) (xe^x-e^x )=1/(D+2) (x-1)
=1/((D-(-2)) ) x-1/((D-(-2)) )=e^(-2x) 1/D e^2x x-e^(-2x) 1/D e^2x
=e^(-2x) (∫▒〖(1/2 e^2x )^' x〗 dx)-e^(-2x) 1/2 e^2x
=e^(-2x) (1/2 e^2x x-1/2 ∫▒e^2x dx)-1/2
=e^(-2x) (1/2 e^2x x-1/4 e^2x )-1/2=1/2 x-1/4-1/2=1/2 x-3/4
∴y=C_1 e^(-2x)+C_2 e^(-x)+1/2 x-3/4
642: 08/17(日)10:36 ID:ie59VeEu(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.020s