フェルマーの最終定理の証明 (692レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
453: 07/22(火)12:29 ID:UfTdyzFE(1/7) AAS
log2>2/3 , log2<7/6
f(x)=(2x^2+15)log2-(4x+30)logx
x?12⇒f(x)>0
f^' (x)= log2?4x-(4 logx-(4x+30)/x)
= log2?4x-4 logx+4-30/x
f^'' (x)=4 log2-4/x+30/x^2
4 log2>4 2/3>3 2/3=2
f^'' (x)>2-4/x+30/x^2
=(2x^2-4x+30)/x^2 =2 (x^2-2x+15)/x^2 =2 ((x-1)^2+14)/x^2 >0
454: 07/22(火)12:30 ID:UfTdyzFE(2/7) AAS
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
455: 07/22(火)12:39 ID:UfTdyzFE(3/7) AAS
Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12)
x=e^logx 2=e^log2
2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2)
x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx)
ここで
(2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14)
2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0
√(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1
x=√2n?12 、つまりn?72
のとき(#15)は成り立つ。
37?n?71⇒n?73?2n
19?n?36⇒n?37?2n
10?n?18⇒n?19?2n
6?n?9⇒n?11?2n
n=4,5⇒n?7?2n
n=3⇒3?6?6
n=2⇒2?3?4
n=1⇒1?2?2
456: 07/22(火)12:39 ID:UfTdyzFE(4/7) AAS
C:x=x(t),y=y(t)
(OP) ?=r(t)=(x(t),y(t))
(OQ) ?=r(t+?t)=(x(t+?t),y(t+?t))
?s=??r?=?r(t+?t)-r(t)?
R?θ??s,1/R=?θ/?s
1/R=lim┬(?t→0)???θ/?s?=dθ/(ds)
dr/dt=r ?(t)
r ?(t)=(x ?(t),y ?(t))
r ?(t+?t)=(x ?(t+?t),y ?(t+?t))
r ?(t)=r ?=(x ?,y ?)
r ?(t+?t)= r ?_Q=(x ?_Q,y ?_Q)
?r ? ??r ?_Q ?sin?θ=det(r ?,r ?_Q)
?θ?sin?θ=(det(r ?,r ?_Q))/?r ? ??r ?_Q ?
det(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ?
=x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t))
?r ? ??r ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 )
=√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 ).
462: 07/22(火)20:09 ID:UfTdyzFE(5/7) AAS
L[y^'' (t)]=s^2 Y(s)-sy(0)-y^' (0) =s^2 Y(s)-2s-4
L[?4y?^' (t)]=4(sY(s)-y(0))=4sY(s)-8
L[4y(t)]=4Y(s)
L[y^'' (t)]-L[?4y?^' (t)]+ L[4y(t)]
=s^2 Y(s)-2s-4-4sY(s)+8+4Y(s)
=Y(s)(s^2-4s+4)-2s+4
L[6te^2t ]=6L[t^1 e^2t ]=6 1!/(s-2)^2 =6/(s-2)^2 ( L[t^n e^at ]=n!/(s-a)^(n+1) )
Y(s)(s^2-4s+4)-2s+4=6/(s-2)^2
Y(s) (s-2)^2-2s+4=6/(s-2)^2
Y(s) (s-2)^2=6/(s-2)^2 +2(s-2)
Y(s)=6/(s-2)^4 +2/(s-2)
Y(s)= F(s-2)とおくと
F(s-2)=6/(s-2)^4 +2/(s-2)
∴F(s)=6/s^4 +2/s=3!/s^(3+1) +2/s
y(t)=L^(-1)[F(s-2)]=e^2t L^(-1) [F(s)] ( L^(-1) [F(s-a)]=e^at L^(-1) [F(s)])
=e^2t L^(-1) [3!/s^(3+1) +2/s] (L[t^n ]=n!/s^(n+1) )
=e^2t (t^3+2)
463: 07/22(火)20:10 ID:UfTdyzFE(6/7) AAS
E(t)=Ri(t)+L di(t)/dt
L[Li^' ]=LsI(s)-Li(0)
=LsI(s)
L[Ri]=RI(s)
L[E]=E/s
E/s= LsI(s)+RI(s)=I(s)(Ls+R)
I(s)=E/s(Ls+R) =E/Ls(s+R/L) 1/Ls(s+R/L) =A/Ls+B/(s+R/L)
1=A(s+R/L)+BLs s=0⇒AR/L=1 A=L/R
s=-R/L⇒-BL R/L=1 B=-1/R
I(s)=E(A/Ls+B/(s+R/L))=E(L/R?1/Ls-1/R?1/(s+R/L))
=E(1/Rs-1/R(s+R/L) )=E/R (1/s-1/(s+R/L))
L^(-1) [E/R (1/s-1/(s+R/L))]=E/R (L^(-1) [1/s-1/(s+R/L)])=E/R (1-e^(-R/L t) )
464: 07/22(火)20:11 ID:UfTdyzFE(7/7) AAS
Memo
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.039s