フェルマーの最終定理の証明 (788レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
6: 与作 04/23(水)15:23:31.87 ID:167XbawO(5/16) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk=1のとき、yを有理数とすると、xは無理数となる。
k=1以外でも、yを有理数とすると、xは無理数となる。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
40: 与作 04/28(月)19:50:12.87 ID:AmGsv3a0(3/5) AAS
3*4=2*6ならば、3*4=k2*6/k
98: 与作 05/13(火)21:53:14.87 ID:+J4v1QpU(4/4) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)となる
(2)はk=1のとき、成立たないので、k=1以外のときも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
116: 与作 05/16(金)10:23:30.87 ID:OI5szXyq(6/10) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk/k=1なので、(y-1)=3、及び(y-1)=k3のとき、成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
158: 与作 06/01(日)16:07:57.87 ID:4FJiQSBY(1/5) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)はk/k=1なので、成立つか、成立たないかは、k=1以外でも同じ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
240: 与作 06/22(日)18:41:34.87 ID:hhhU/jcg(3/8) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
490: 07/25(金)13:18:57.87 ID:5/EpQV9W(3/5) AAS
x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010
((x^2+1)+2x)^1010
=(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+
?+1010(x^2+1) (2x)^1009+(2x)^1010
(2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると
((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……?

(2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505
((4x^2+4)-4)^505
=(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+
?+505(4x^2+4) (-4)^1009+(-4)^1010
(-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると
((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010
=4q(x^2+1)+(-2)^505 2^505
=4q(x^2+1)-2^1010……?
(x+1)^2020=p(x^2+1)+(2x)^1010
=p(x^2+1)+4q(x^2+1)-2^1010
=(x^2+1)(p+4q)-2^1010
507: 与作 07/27(日)15:35:04.87 ID:p6uh5pZX(6/14) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)が成り立つならば、(y-1)(y+1)=k2x/k…(3)も成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
612: 08/08(金)09:05:38.87 ID:K5nrmcJ7(1/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
683: 08/20(水)18:25:12.87 ID:kS5YreVJ(8/9) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)

s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
Y(s)(s-1)(s-2) = s/6+1/3+1/(s+1) = (s(s+1)+2(s+1)+6)/6(s+1) = (s^2 + 3s + 8)/6(s+1)
Y(s) = (s^2 + 3s + 8)/6(s+1)(s-1)(s-2) = A/(s+1) + B/(s-1) + C/(s-2)
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1

Y(s) = 1/6(s+1) - 1/(s-1) + 1/(s-2)
y(t) = -e^t + e^(2t) + (1/6)e^(-t)
704: 08/22(金)21:47:32.87 ID:aTp7UHTZ(6/9) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.021s