フェルマーの最終定理の証明 (700レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
253: 与作 06/23(月)23:59:54.74 ID:YG/65mHI(8/8) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
よって、(y-1)(y+1)=k2x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
401: 与作 07/18(金)10:31:12.74 ID:CPsIms6C(3/11) AAS
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
k=1
y=3
x=4
533: 07/28(月)17:43:54.74 ID:Vsf8XHSj(10/11) AAS
?θ/?s=(x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) 1/?r(t+?t)-r(t)?
=((x ?(y ?(t+?t)-y ?(t))-y ?(x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?t?r(t+?t)-r(t)?^(-1)
=(x ? ((y ?(t+?t)-y ?(t)))/?t-y ? ((x ?(t+?t)-x ?(t)))/?t)/(√(x ?^2+y ?^2 ) √(?(x ?(t+?t))?^2+?(y ?(t+?t))?^2 )) ?(r(t+?t)-r(t))/?t?^(-1)
1/R=(lim)┬(?t→0)???θ/?s?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? ?r ? ??^(-1)
=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ))
=(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2)
R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.031s