フェルマーの最終定理の証明 (692レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
171: 与作 06/04(水)13:56:09.57 ID:3SCiMrs4(2/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなり、成立つ。
(2)はk/k=1なので、成立つか、成立たないかは、k=1以外でも同じ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
427: 与作 07/20(日)21:26:26.57 ID:0qDaj0Zq(9/10) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=3、(y^2+y+1)=(x^2+x)とならない。
(2)はk=1のとき、成立たないので、k=1以外でも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
528: 07/28(月)12:55:10.57 ID:Vsf8XHSj(5/11) AAS
b=t×n=1/√(a^2+c^2 ) (■(-asin?(t)@acos?(t)@c))×(■(-cos?(t)@?-sin??(t)@0)) ※外積のスカラー倍
=1/√(a^2+c^2 ) |■(i&j&k@-asin?(t)&acos?(t)&c@-cos?(t)&-sin?(t)&0)|
=1/√(a^2+c^2 ) (|■(acos?(t)&c@-sin?(t)&0)|,|■(c&-asin?(t)@0&-cos?(t) )|,|■(-asin?(t)&acos?(t)@-cos?(t)&-sin?(t) )|)
=1/√(a^2+c^2 ) (csin?(t), -?c?cos??(t), a)
b^' (s)=db/ds=db/dt?dt/ds=1/√(a^2+c^2 ) (?c?cos??(t), csin?(t), 0) 1/√(a^2+c^2 )
=1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0)
b^' (s)=-τn より
1/(a^2+c^2 ) (?c?cos??(t), csin?(t), 0)=-τ(-cos?(t), ?-sin??(t), 0)
=τ(cos?(t), sin?(t), 0)
1/(a^2+c^2 ) ?c?cos??(t)=τ cos?(t)
τ=c/(a^2+c^2 )
542: 07/31(木)11:54:17.57 ID:QyItRY8I(5/5) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
571: 08/02(土)23:41:19.57 ID:rqoOg5pg(1) AAS
適当言っていいすか?
三乗根は空間であり、空間の最小単位は素粒子であり、素粒子は相互作用で存在するため、自然数の最小単位の1ではないことから、n=3の時、xⁿ + yⁿ = zⁿ となる自然数の組 は存在しない
586: 08/04(月)15:11:06.57 ID:8i7AmsxV(4/4) AAS
元々は素数について考えたはずなんだけど>>583の説には素数出てきてないからかな?なんだかしっくり来ないんだよな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.033s