フェルマーの最終定理の証明 (692レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
84: 与作 05/06(火)10:58:21.45 ID:vtgGgzPS(1) AAS
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
k=1のとき、(y-1)(y+1)=2x
(y-1)=2、y=3
(3+1)=x
x=4
92: 与作 05/11(日)18:55:30.45 ID:oo5sE4jG(3/4) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=3、(4^2+4+1)≠(x^2+x)となる。
(2)はk=1のとき、成立たないので、k=1以外のときも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
201: 与作 06/14(土)18:21:04.45 ID:b7Hd/XxU(2/15) AAS
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。

(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kとなる。
450: 与作 07/22(火)10:50:18.45 ID:4RVzbR/O(3/10) AAS
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
k=1
y=3
x=4
486: 07/24(木)21:01:46.45 ID:WNOov+Jn(3/4) AAS
Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12)
x=e^logx 2=e^log2
2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2)
x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx)
(2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14)
2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0
√(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1
x=√2n?12 、つまりn?72
37?n?71⇒n?73?2n
19?n?36⇒n?37?2n
10?n?18⇒n?19?2n
6?n?9⇒n?11?2n
n=4,5⇒n?7?2n
n=3⇒3?6?6
n=2⇒2?3?4
n=1⇒1?2?2
564: 08/02(土)14:14:12.45 ID:JM3Uouko(5/8) AAS
Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12)
x=e^logx 2=e^log2
2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2)
x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx)
 ここで
(2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14)
2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0
√(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1
x=√2n?12 、つまりn?72
のとき(#15)は成り立つ。
37?n?71⇒n?73?2n
19?n?36⇒n?37?2n
10?n?18⇒n?19?2n
6?n?9⇒n?11?2n
n=4,5⇒n?7?2n
n=3⇒3?6?6
n=2⇒2?3?4
n=1⇒1?2?2
575: 08/03(日)19:43:38.45 ID:FKrzG2hZ(2/4) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
577: 08/03(日)19:49:45.45 ID:FKrzG2hZ(4/4) AAS
?_C^ ??f(x,y)dx?
=∫_a^b??f(x,φ_1 (x))dx?+∫_b^a??f(x,φ_2 (x))dx?
=∫_a^b??f(x,φ_1 (x))dx?-∫_a^b??f(x,φ_2 (x))dx?
=-∫_a^b??f(x,φ_2 (x))-f(x,φ_1 (x))? dx
=-∫_a^b??∫_(φ_1 (x))^(φ_2 (x))??(∂f(x,y))/∂y dy? dx?
=-∬_D^ ?(∂f(x,y))/∂y dxdy
※∫_(φ_1 (x))^(φ_2 (x))??(∂f(x,y))/∂y dy?=[?( @f(x,y)@ )]_(φ_1 (x))^(φ_2 (x))=f(x,φ_2 (x))-f(x,φ_1 (x))
670: 与作 08/20(水)08:45:21.45 ID:X9kJ+Syw(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.029s