フェルマーの最終定理の証明 (738レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
145: 与作 05/29(木)12:00:58.20 ID:RIlYCM+P(2/3) AAS
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2とおくと、(y+1)=x/kとなる。
k=3、y=7、x=24
148: 与作 05/30(金)13:58:04.20 ID:r0xb+d6Z(2/7) AAS
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2とおくと、(y+1)=x/kとなる。
k=6、y=13、x=84
189: 与作 06/07(土)21:46:02.20 ID:2GASwNQI(10/10) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)は成立たない。
(2)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)とおく。
(3)は(y-1)=k3のとき、(y^2+y+1)=(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
308: 与作 07/04(金)14:53:05.20 ID:kpNFIDiH(4/11) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)は成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
351: 与作 07/14(月)22:03:59.20 ID:nqT/+2Xo(3/7) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)は(y-1)=k2のとき、(y+1)=x/kとなる。
kの有無は(2)の成否に関係しない。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
375: 与作 07/17(木)12:20:43.20 ID:4J9At0pY(9/17) AAS
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
k=2
y=5
x=12
413: 与作 07/18(金)21:43:31.20 ID:CPsIms6C(9/11) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)がk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
430: 07/21(月)06:10:27.20 ID:W1xjBo9V(2/14) AAS
lim┬(c→∞)?(∫_1^c??e^(-x) x^(p-1) ? dx)?lim┬(c→∞) n!/(n-p) (1-1/C^(n-p) )=n!/(n-p)
Γ(p)=∫_0^∞??e^(-x) x^(p-1) ? dx
=∫_0^1??e^(-x) x^(p-1) ? dx+lim┬(c→∞)?(∫_1^c??e^(-x) x^(p-1) ? dx)?1/p+n!/(n-p)
434: 07/21(月)06:15:57.20 ID:W1xjBo9V(6/14) AA×

500: 07/27(日)12:25:31.20 ID:PdhNF7gV(1/8) AAS
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)

m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
534: 07/28(月)17:44:26.20 ID:Vsf8XHSj(11/11) AAS
a_1= [■(0@1@1)],a_2= [■(1@0@1)],a_3= [■(1@1@0)]
a_1→u_1
u_1=a_1/?a_1 ? =a_1/√(1+1)=1/√2 [■(0@1@1)]
a_2→u_2
b_1=(a_2?u_1 ) u_1=(1/√2 [■(1@0@1)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)]
b_2=a_2-(a_2?u_1 ) u_1
=[■(1@0@1)]-1/2 [■(0@1@1)]=[■(1-0@0-1/2@1-1/2)]=[■(1@-1/2@1/2)]=1/2 [■(2@-1@1)]
?b_2 ?=1/2 √(4+1+1)=√6/2
u_2=b_2/?b_2 ? =2/√6 1/2 [■(2@-1@1)]=1/√6 [■(2@-1@1)]

a_3→u_3
c_1=(a_3?u_1 ) u_1=(1/√2 [■(1@1@0)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)]
582: 08/04(月)14:49:52.20 ID:1IPLg7e8(5/5) AAS
∫_0^∞?(sin(x))/x dx
∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x)

F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0)

dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx
=∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx
=∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx
=-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx
=∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx
=[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx
=0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx
=1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx
=[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx
=-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx
=-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.042s