フェルマーの最終定理の証明 (692レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
10: 与作 04/23(水)17:23:42.19 ID:167XbawO(8/16) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)は(y-1)=k3とすると、xは無理数となる。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
75: 与作 05/04(日)15:22:44.19 ID:7QnM+HG2(1/4) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(3+1)=xとなる。
よって、(y-1)=k2、k(k2+2)=xとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
86: 与作 05/10(土)14:40:57.19 ID:Ea4u4dx4(2/5) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(3+1)=xとなる。
(2)はk=1のとき、成立つので、k=1以外のときも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
191: 与作 06/08(日)16:33:22.19 ID:6cCIxb+B(2/3) AAS
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xが成立つ。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kが成立つ。
294: 与作 07/02(水)19:55:39.19 ID:oZn35gPk(24/29) AAS
※同じ数は、同じ形に因数分解できる。
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。
(2)の両辺は同じ形に因数分解できない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
397: 07/18(金)07:34:52.19 ID:QNG/Z1cz(5/12) AA×

426: 与作 07/20(日)21:24:46.19 ID:0qDaj0Zq(8/10) AAS
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
k=2
y=5
x=12
598: 与作 08/07(木)09:29:56.19 ID:o1NnEstn(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
611: 08/07(木)21:58:21.19 ID:jDc0ZGtb(9/9) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.052s