フェルマーの最終定理の証明 (707レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
249: 与作 06/23(月)23:19:11.18 ID:YG/65mHI(4/8) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
よって、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
267: 与作 06/28(土)15:26:56.18 ID:TrYIPlpZ(2/2) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
よって、(y-1)(y^2+y+1)=k3(x^2+x)/kとならない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
624: 08/11(月)20:56:01.18 ID:XI0wb1W4(5/5) AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
645: 与作 08/17(日)14:26:03.18 ID:XIrE7hQA(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
660: 与作 08/19(火)10:37:25.18 ID:0I4aqNXf(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.026s