フェルマーの最終定理の証明 (692レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
28: 与作 04/25(金)22:45:28.17 ID:EiqRj9XQ(9/9) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)は(y-1)=2のとき、成立つので、(y-1)=k2でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
111: 与作 05/16(金)09:48:57.17 ID:OI5szXyq(1/10) AAS
A,B,C,Dは式とする。
※AB=CDが成立つならば、AB=kCD/kも成立つ。
※AB=CDが成立たないならば、任意のkに対して、
AB=kCD/kが成立つA,B,C,Dを与えれば、成立つ。
126: 与作 05/18(日)13:18:01.17 ID:RrY838kd(3/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk/k=1なので、(y-1)=2、及び(y-1)=k2のとき、成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
305: 与作 07/04(金)08:39:18.17 ID:kpNFIDiH(1/11) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、n{(n+1)^(n-1)+…+(n+1)+1}=n(x^(n-1)+…+x)は成立たない。
よって、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
377: 与作 07/17(木)12:21:50.17 ID:4J9At0pY(11/17) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)がk=1のとき、成立つならば、k=1以外でも成立つ。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
387: 07/17(木)15:28:49.17 ID:88t231TB(13/15) AAS
τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0
t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0
t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ
f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ?
=-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ?
=-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t)
453: 07/22(火)12:29:34.17 ID:UfTdyzFE(1/7) AAS
log2>2/3 , log2<7/6
f(x)=(2x^2+15)log2-(4x+30)logx
x?12⇒f(x)>0
f^' (x)= log2?4x-(4 logx-(4x+30)/x)
= log2?4x-4 logx+4-30/x
f^'' (x)=4 log2-4/x+30/x^2
4 log2>4 2/3>3 2/3=2
f^'' (x)>2-4/x+30/x^2
=(2x^2-4x+30)/x^2 =2 (x^2-2x+15)/x^2 =2 ((x-1)^2+14)/x^2 >0
558: 与作 08/01(金)23:02:09.17 ID:SvqlOkUt(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
566: 与作 08/02(土)15:41:52.17 ID:tUgGzTPf(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.023s