フェルマーの最終定理の証明 (783レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
192: 与作 06/08(日)18:56:52.04 ID:6cCIxb+B(3/3) AAS
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)は成立たない。
(2)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)とおく。
(3)は(y-1)=k3のとき、(y^2+y+1)=(x^2+x)/kは成立たない。
216: 与作 06/15(日)10:24:45.04 ID:d9lM3H4v(2/7) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
よって、(2)は(y-1)(y+1)=k2x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
261: 与作 06/26(木)16:33:51.04 ID:Fb63yv0W(1) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
よって、(y-1)(y+1)=k2x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
278: 与作 07/02(水)13:43:55.04 ID:oZn35gPk(8/29) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、3*21≠3*(x^2+x)となる。
(2)の両辺は同じ形に因数分解できない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
368: 07/17(木)11:36:57.04 ID:88t231TB(6/15) AAS
?f?^2= (?_(k=0)^∞??β_k u_k (x) ?)^2=??_(k=0)^∞??β_k u_k (x) ?,?_(m=0)^∞??β_m u_m (x) ??
?β_0 u_0 (x),( β_0 u_0 (x)+β_1 u_1 (x) ?+β?_2 u_2 (x)+??+β?_m u_m (x)+? )?=?β_0?^2
?β_1 u_1 (x),( β_0 u_0 (x)+β_1 u_1 (x) ?+β?_2 u_2 (x)+?+β_m u_m (x)+? )?=?β_1?^2
?β_2 u_2 (x),( ?β_0 u_0 (x)+β?_1 u_1 (x) ?+β?_2 u_2 (x)+?+β_m u_m (x)+? )?=?β_2?^2
??
?f?^2=?_(k=1)^∞??β_k?^2 ???
428: 与作 07/20(日)21:27:48.04 ID:0qDaj0Zq(10/10) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)はk=1のとき、成立たないので、k=1以外でも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
437: 07/21(月)11:09:23.04 ID:W1xjBo9V(9/14) AAS
log2>2/3 , log2<7/6
は既知とする。
f(x)=(2x^2+15)log2-(4x+30)logx
とおいたとき
x?12⇒f(x)>0
であることを証明すればよい。
f^' (x)= log2?4x-(4 logx-(4x+30)/x)
= log2?4x-4 logx+4-30/x
f^'' (x)=4 log2-4/x+30/x^2
4 log2>4 2/3>3 2/3=2
なので
f^'' (x)>2-4/x+30/x^2
=(2x^2-4x+30)/x^2 =2 (x^2-2x+15)/x^2 =2 ((x-1)^2+14)/x^2 >0
したがってf^' (x)は単調増加である。
597: 与作 08/07(木)09:28:07.04 ID:o1NnEstn(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
688: 08/21(木)03:57:45.04 ID:bs1zgXNt(4/5) AA×

735: 08/28(木)03:58:28.04 ID:Q0vsEu0I(3/3) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
h→0
f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
782: 09/01(月)20:13:42.04 ID:b44elzXy(5/6) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.040s