[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
142: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/04(火)16:04 ID:+HgMDnV2(3/11) AAS
つづき
英 wikipedia
外部リンク:en.wikipedia.org
Rank–nullity theorem
(google訳)
ランク-ヌル定理(階数零定理)
階数零定理は線型代数学の定理であり、次のことを主張します。
略す
したがって、等しい有限次元のベクトル空間の線型変換の場合、単射性または全射性のいずれかが全単射性を意味することになります。
(原文 It follows that for linear transformations of vector spaces of equal finite dimension, either injectivity or surjectivity implies bijectivity.)
再定式化と一般化
この定理は、ベクトル空間の場合の代数学の第一同型定理の記述であり、分割補題に一般化されます。
より現代的な言葉で言えば、この定理はベクトル空間の短完全列はそれぞれ分割される、と表現することもできる。
略す
A third fundamental subspace
When T:V→W is a linear transformation between two finite-dimensional subspaces, with
n=dim(V) and m=dim (W) (so can be represented by an m×n matrix M),
the rank–nullity theorem asserts that if T has rank r, then n−r is the dimension of the null space of M, which represents the kernel of T.
In some texts, a third fundamental subspace associated to T is considered alongside its image and kernel: the cokernel of T is the quotient space
W/Im(T), and its dimension is m−r.
This dimension formula (which might also be rendered
dim Im(T)+dimCoker(T)=dim(W)
together with the rank–nullity theorem is sometimes called the fundamental theorem of linear algebra.[7][8]
再定式化と一般化
この定理は、ベクトル空間の場合の代数学の第一同型定理の記述であり、分割補題に一般化されます。
より現代的な言葉で言えば、この定理はベクトル空間の短完全列はそれぞれ分割される、と表現することもできる。
0→U→V→R→0
はベクトル空間の短完全列 であるので、
U⊕R≅Vしたがって
dim(U)+ dim(R)=dim(V).
略す
We see that we can easily read off the index of the linear map
T from the involved spaces, without any need to analyze
T in detail. This effect also occurs in a much deeper result: the Atiyah–Singer index theorem states that the index of certain differential operators can be read off the geometry of the involved spaces.
つづく
上下前次1-新書関写板覧索設栞歴
あと 860 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.016s