[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
5: 02/01(土)08:47 ID:lDxwqd7y(5/16) AAS
つづき

2はじめに
このノートでは、最近得られた対数的標準対に対する非消滅定理を解説する。この非消滅定理は、対数的標準対に対する固定点自由化定理と同値であることが示される。
今回の非消滅定理の一番のポイントは、その定式化である。
数学的な内容は固定点自由化定理と同値であるが、非消滅定理として正しく定式化することにより、極小モデル理論の基本定理たちの証明に劇的な簡略化をもたらした

3おわび
80年代前半から現在にいたるまで、極小モデル理論研究の最も重要でよく使われるテクニックは川又–Viehweg消滅定理である。80年代後半から、乗数イデアル層の考え方が持ち込まれ、Nadel型の消滅定理をつかうことも非常に有効であることが分かって来た。いずれにせよ、すべて川又–Viehweg消滅定理の応用として扱うことが出来る話である。今回の一連の発展は、その川又–Viehweg消滅定理の部分を一般化し、新しい道具で極小モデル理論を考え直した、ということである。
ここ数年いろいろと迷走してしまったが、[F7]で古典的な川又のX-論法と乗数イデアル層の理論をミックスした新しい極小モデル理論の基礎と基本的なテクニックを提供することで、今後数十年間の極小モデル理論の土台は完成したと思う。一言で言うと、極小モデル理論の基礎部分が純ホッジ構造の話から混合ホッジ構造に移り変わった、である。興味を持たれた読者は、[F3]、[F4]、[F6](いずれも短い)を読むことを勧める

4特異点の定義
ここでは特異点の定義について最低限のことだけを述べておく。詳しくは、[K森,§2.3]を見ていただきたい。極小モデル理論の専門家以外には頭の痛くなる話題であろう。

5非消滅定理
以下の定理がこの章の主定理である。対数的標準対に対する非消滅定理である。

7証明のアイデア
ここでは非消滅定理の証明のアイデアについて説明する。

8今後の課題
今回の仕事で、[K森]の2章の後半と3章が完全に一般化されたことになる。
道具である消滅定理が[K森]よりも格段に進歩しているからである。

9勉強の仕方
消滅定理は[F3]がお勧めである。[K森]の消滅定理の証明と全く同じ書き方で書いてある。次に[F6]を読めば極小モデル理論の基本定理(非消滅定理、固定点自由化定理、有理性定理、錐定理)が簡単に学べる。ある意味[K森]の3章より簡単である。消滅定理が強力になったので、川又によるX-論法(広中の特異点解消定理をつかって係数を揺するという有名なテクニック)は不要になったのである。基本定理の証明の途中では広中の特異点解消定理すら必要としなくなったのである。Ambro氏のquasi-logvarietiesの理論に興味がある人には、[F4]をお勧めする。理論の本質的な部分は[F4]で全部理解出来るはずである。技術的な細部まで理解しようとすると、[F5]を読まないと仕方ないであろう。著者の私が言うのもなんだが、[F5]を読むのは大変だと思う。技術的細部に拘りまくったからである。

つづく
6: 02/01(土)08:47 ID:lDxwqd7y(6/16) AAS
つづき

10おまけ:個人的な考え
ここでは、80年代から現在にいたるまで極小モデル理論で重要な位置を占めているX-論法と、最近の新しい議論について個人的な意見を少し書いてみたい。通常の論文などには書かない個人的な印象である。あくまで私の考えである。X-論法の最もすばらしい点は、その強力さにあると思う。広中の特異点解消定理と係数を揺するという小細工をつかうことにより、様々な結果を川又–Viehweg消滅定理の応用として示すことが出来るのである。

最後に少しネタをばらしておく。[F1]と[F2]で対数的標準対に対する評価付きの固定点自由性の問題を扱った。これらは川又対数的末端対に対する結果の完全な焼き直しである。数学的には大した結果ではないと思う。[F1]と[F2]はKoll´ar氏やAngehrn氏とSiu氏の議論の手直しに過ぎない。ただし、[F1]と[F2]での試行錯誤が今回の[F6]につながったので、そういう意味では[F1]と[F2]は私にとっては非常に価値があった。結局のところ、やっぱりいろいろやってみないとダメだな、と改めて思った。以上。

藤野修先生は、令和5年 大阪科学賞を受賞されています
おめでとうございます

(参考)
//osaka-prize.ostec.or.jp/41-1
第41回(令和5年度)
大阪科学賞(OSAKA SCIENCE PRIZE)受賞者の横顔
藤野  修 49歳

研究業績:小平消滅定理の一般化と代数幾何学への応用
代数多様体とは、大雑把に言うと、有限個の多項式の共通零点集合のことです。高校の教科書に出てくる円、楕円、放物線などは代数多様体です。
もっと簡単な平面上の直線も代数多様体です。高校では主にxy平面上で幾何学図形を考えます。これは二次元の空間内で一次元の代数多様体を考えることに対応します。xyz空間の中の球面も代数多様体です。これは三次元空間内の二次元の代数多様体です。
このように代数多様体は素朴な幾何学的対象です。ここで変数の数を増やしてみましょう。幾何学的には高次元の空間を考えることになります。高次元の空間内で複数の代数多様体の交わりを考えます。私たちはこのような幾何学図形を日々研究しています。
日本人フィールズ賞受賞者3名の仕事も高次元代数多様体に関するものです。
残念ながら高次元の代数多様体は絵に描くことができません。
そこで私たちは抽象的な数学理論を展開します。高次元代数多様体論の究極目標の一つは双有理分類という大雑把な分類を完成させることです。
現在の標準理論は、森重文によって1980年代に創められた森理論や極小モデル理論と呼ばれるものです。
私は小平の消滅定理と呼ばれるコホモロジーの消滅定理の一般化を確立し、広中の特異点解消と小平消滅定理の一般化を駆使して森理論の適用範囲を究極的に拡張するという仕事をしました。
ホッジ理論的な観点からは理論の混合化を実行したことになります。
これにより、従来不可能であったぐちゃぐちゃに潰れた高次元代数多様体の研究も可能になり、代数多様体の退化や特異点の研究などに応用されています。
このような基礎研究が実社会で応用される日が来ることを夢見ています。

代数多様体とは?

代数多様体の双有理分類
すでに述べましたが、代数多様体論の究極目標の一つは、代数多様体を双有理的に分類することです。

つづく
7
(25): 02/01(土)08:48 ID:lDxwqd7y(7/16) AAS
つづき

数学者の日常

小平の消滅定理の一般化

ホッジ構造
非特異射影多様体のコホモロジーにはホッジ構造と呼ばれる構造が入ります。これは純ホッジ構造と呼ばれるものになっています。一般の代数多様体のコホモロジーには純ホッジ構造は入らないのですが、混合ホッジ構造と呼ばれる純ホッジ構造を拡張したものが入ります。
(引用終り)
以上

なお、
おサル=サイコパス*のピエロ(不遇な「一石」外部リンク:textream.yahoo.co.jp 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」)
<*)サイコパスの特徴>
(参考)外部リンク:blog.goo.ne.jp サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(**)注;外部リンク:en.wikipedia.org Hyperboloid
Hyperboloid of two sheets :画像リンク

外部リンク:ja.wikipedia.org 双曲面
二葉双曲面 :画像リンク


おサルさんの正体判明!(^^)
スレ12 2chスレ:math より
”「ガロア理論 昭和で分からず 令和でわかる
 #平成どうしたw」
昭和の末期に、どこかの大学の数学科
多分、代数学の講義もあったんだ
でも、さっぱりで、落ちこぼれ卒業して
平成の間だけでも30年、前後を加えて35年か”
”(修士の)ボクの専攻は情報科学ですね”とも

可哀想に、数学科のオチコボレで、鳥無き里のコウモリ***)そのもので、威張り散らし、誰彼無く噛みつくアホ
本来お断り対象だが、他のスレでの迷惑が減るように、このスレで放し飼いとするw(^^

注***)鳥無き里のコウモリ:自分より優れた数学DRやプロ数学者が居ないところで、たかが数学科のオチコボレが、威張り散らす姿は、哀れなり〜!(^^;

なお
低脳幼稚園児のAAお絵かき
小学レベルとバカプロ固定
は、お断りです

小学生がいますので、18金(禁)よろしくね!(^^

つづく
8
(27): 02/01(土)08:49 ID:lDxwqd7y(8/16) AAS
つづき

再録します。おサルの傷口に塩ですw
2chスレ:math
2023/06/11(日)
下記だねw(>>63再録)
スレ主です
数学科オチコボレのサルさんw 2chスレ:math
線形代数が分かっていないのは、あ な た! www
前スレより
2chスレ:math
傷口に塩を塗って欲しいらしいなw
 >>406-407より以下再録
棚から牡丹餅というかw

つまり
・私「正方行列の逆行列」(数年前)
 ↓
・おサル「正則行列を知らない線形代数落ちこぼれ」
 ↓
・私「零因子行列のことだろ?知っているよ」
 ↓
・おサル「関係ない話だ!」と絶叫
 ↓
・おサル『正則行列の条件なら、「零因子行列であること」はアウトですね
 いかなる行列が零因子行列か述べる必要がありますから』
 ↓
・私「あんた、上記の自分の文章を読み返して おかしいと気づかないか?」
 ↓
・おサル『「0以外の体の元は乗法逆元を持たない」のつもりで
「零因子以外の行列は乗法逆元を持たない」と書いて ケアレスミスだと言い張りたいんだろうけど』

<解説>
1)何度か、アホが気づくチャンスあった
 最初に”零因子”の意味を検索して知れば、「関係ない話だ!」と絶叫することもない
 (というか、”零因子”を知らないのは、ちょっと代数あやしいよねw)
2)『正則行列の条件なら、「零因子行列であること」はアウトですね
 いかなる行列が零因子行列か述べる必要がありますから』
 に、私「あんた、上記の自分の文章を読み返して おかしいと気づかないか?」と指摘された時点で
 ”零因子”の意味を調べて理解すべきだったのだ
3)恥の上塗り『「0以外の体の元は乗法逆元を持たない」のつもりで
 「零因子以外の行列は乗法逆元を持たない」と書いて ケアレスミスだと言い張りたいんだろうけど』
 は、あまりにも幼稚。「ケアレスミス」の一言では片づけられないアホさ加減wwwwww
4)確かに、私の「正方行列の逆行列」は不正確な言い方ではあったが
 アホさるの自爆を誘ったとすれば、怪我の功名というか、誘の隙(さそいのすき)というべきかww
 ゆかいゆかい!ww

つづく
9
(25): 02/01(土)08:50 ID:lDxwqd7y(9/16) AAS
つづき

あほサルの続き

さて
『なぜ、ZFC公理まで遡らなくても数学が出来るの?』スレより
itest.5ch.net/rio2016/test/read.cgi/math/1731415731/771
2024/12/21
おサルさん
笑えるよ
>>684-686 >>689
(引用開始)
正則性公理は ”∈-induction”と関係していて
ZFC内の全ての集合について”∈-”による整礎関係を与え、
∈に関する整礎帰納法である”∈-induction”の適用を可能とする
全順序とか余計な一言を書いたせいで大恥かいたな 高卒童貞

正則性公理は∈を整礎関係たらしめると同時に反射律 a∈a を否定するため順序関係たらしめない。
また正則性公理と関係無く推移律 a∈b ∧ b∈c ⇒ a∈c は成立しない。実際 {}∈{{}} ∧ {{}}∈{{{}}} は真だが、{}∈{{{}}} は偽。
>正則性公理は ”∈-induction”と関係していて
>ZFC内の全ての集合について”∈-”による整礎な全順序関係を与え
は大間違い
>また…推移律 a∈b ∧ b∈c ⇒ a∈c は成立しない。
 ヌォォォォ
 すまん・・・OTL
 工学部卒の自己愛童貞と違うので土下座で謝罪
(引用終り)
オレは、ここの次スレを立てることはしないが
自分の立てたスレが、数学板に3つある
おサルさんの学力顕彰のために、3つスレで 次回のスレ立ての
テンプレに入れるよ。そして、眺めてニヤリと笑うことにしよう
『正則性公理は∈を整礎関係たらしめると同時に反射律 a∈a を否定するため順序関係たらしめない』
か。妄言である! 数学科オチコボレさんだってねw ガッハハww
(引用終り)

・整列集合 ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88
 『(選択公理に同値な)整列可能定理は、任意の集合が整列順序付け可能であることを主張するものである。整列可能定理はまたツォルンの補題とも同値である』
 『実数からなる集合
正の実数全体の成す集合 R+ に通常の大小関係 ≤ を考えたものは整列順序ではない。例えば開区間 (0, 1) は最小元を持たない。一方、選択公理を含む集合論の ZFC 公理系からは、実数全体の成す集合 R 上の整列順序が存在することが示せる。しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]。ただし、R 上の定義可能な整列順序の存在は ZFC と(相対的に)無矛盾である。例えば V=L は ZFC と(相対的に)無矛盾であり、ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う。』

つづく
10
(31): 02/01(土)08:50 ID:lDxwqd7y(10/16) AAS
つづき

・自然数 ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
 『形式的な定義 自然数の公理
 以上の構成(注 ノイマン構成)は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
 例えば、0 := {}, suc(a) := {a} と定義したならば、
 0 := {}
 1 := {0} = {{}}
 2 := {1} = {{{}}}
 3 := {2} = {{{{}}}}
 と非常に単純な自然数になる』
・0<1<2<3<・・・
 {}<{{}}<{{{}}}<{{{{}}}}<・・・
 ここで
 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・
 と書ける
 何が言いたいか?
 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を逆に辿れば
 {}<{{}}<{{{}}}<{{{{}}}}<・・・ となり
 0<1<2<3<・・・ となる
・つまり、{}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ において
 ∈を<に書き換える
 そうして、{}→0、{{}}→1、{{{}}}→2、{{{{}}}}→3、・・・
 と順序数の背番号がついていると思え
 あるいは、例えば {{{}}}→2 ならば、括弧{}の多重度を基準に整列していると考えれば良い(括弧{}の多重度-1が、順序数に相当している)
・このように、列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を、順序関係<に置き換えて
 {}<{{}}<{{{}}}<{{{{}}}}<・・・ として、整列集合と考えることができる(整列可能定理の主張はこれ)
・おサルさん、なにをとち狂ったか、列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ が、整列していることを否定する
 上記『{}∈{{{}}} は偽』とか、勝手な妄想を沸かす。ほんと、エンタの王で笑いを取る名人だね
 私には、単なるアホとしか思えないがw ;p)
以上

あと
<乗数イデアル関連(含む層)>の話や
文学論、囲碁の話もあります
これも、5chらしくて良いと思いますw

テンプレは、以上です
11: 02/01(土)11:09 ID:YIkJbYsl(1/11) AAS
>>10
{}∈{{{}}} は偽
{{{}}}の元は{{}}のみだから
分からなければ中学数学からやり直そう
12: 02/01(土)11:15 ID:YIkJbYsl(2/11) AAS
>>10
>列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・を、順序関係<に置き換えて
>{}<{{}}<{{{}}}<{{{{}}}}<・・・ として、整列集合と考えることができる
大間違い
整列順序どころかそもそも順序でない
なぜなら {}∈{{{}}} は偽のため順序の要件である推移律を満たさないから
定義を確認せず独りよがりに妄想するから間違える
13: 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)17:52 ID:lDxwqd7y(11/16) AAS
alg-d 壱大整域氏
動画解説
”【順序数入門3】順序数を使った証明の例:Zornの補題”
貼ります

alg-d.com/math/ac/
alg-d 壱大整域
トップ > 数学 > 選択公理
選択公理
お知らせ
このページの内容が紙の本になりました。Amazonで購入できます。
選択公理: 同値な命題とその証明
選択公理と同値な命題一覧
選択公理と同値な命題とその証明 動画版(AC⇒Zornのみ)

youtu.be/Lg5pPZlSHfw?t=1
【順序数入門3】順序数を使った証明の例:Zornの補題
alg-d
2,846 回視聴 2023/04/30
14
(13): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)17:57 ID:lDxwqd7y(12/16) AAS
前スレ 再録
rio2016.5ch.net/test/read.cgi/math/1735693028/907
いつもお世話になっている
alg-d 壱大整域氏
選択公理→ (整列可能定理)

これ分かり易いかも
”写像 g:λ→X∪{∞} を
g(α ) := f( X\{g(β)|β<α} )”で
 順序数 → X∪{∞} (実質 Xのこと)
なる g を 導入しているんだ
で、写像 g の全単射を 言う
なるほどね

そうすると、置換公理を使う証明は、無理筋かも
循環論法になる恐れがある、多分 (不可能の証明は 難しいので いまは深入りしないことに)

(参考)(蛇足だが P(X)は、Xの冪集合。なお。原サイトの方が見やすいよ)
alg-d.com/math/ac/wo_z.html
alg-d 壱大整域
トップ > 数学 > 選択公理 > 整列可能定理とZornの補題
2011年11月13日更新
整列可能定理とZornの補題

定理次の命題は(ZF上)同値.
1.選択公理
2.任意の集合Xは整列順序付け可能 (整列可能定理)
3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題)

証明
(1 ⇒ 2)
Xを集合とする.Xが整列可能である事を示す.
順序数λで,¬|λ|≦|X| となるものを取る.
選択公理を A := P(X)\{ ∅ } に適用して,選択関数 f: A→X を得る.
Xに含まれない元 ∞ ∉ X を用意して,f( ∅ ) := ∞ と定義することで f を f: P(X)→X∪{∞} に拡張しておく.
写像 g:λ→X∪{∞} を
g(α ) := f( X\{g(β)|β<α} )
で定義する.

α, β<λに対して,g(α)=g(β)≠∞ならば,α=βである.
∵β<αであるとする.g(α)≠∞だから,選択関数 f の性質より g(α) = f(X\{g(β)|β<α}) ∈ X\{g(β)|β<α} となる.即ち g(α) ∉ { g(β) | β<α } だから g(α)≠g(β) である.

よって,もし g(α) = ∞ となるα<λが存在しなければ,g:λ→X は単射となる.
これは ¬|λ|≦|X| に矛盾する.故に g(α) = ∞ となる α<λ は存在する.
そこで γ := min{ α<λ | g(α)=∞ }と置く.このときg|γ: γ→X は全単射である.
∵∞ = g(γ) = f( X\{g(β)|β<γ} )だから,X\{g(β)|β<γ} = ∅,つまりg|γは全射でなければならない.単射性は先に示したことから明らか.

よってこれによりXを整列する事ができる.

(2 ⇒ 3)略す

(3 ⇒ 1)略す

おまけ
(2⇒1)略す
15
(8): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)18:17 ID:lDxwqd7y(13/16) AAS
前スレより 再録
rio2016.5ch.net/test/read.cgi/math/1735693028/913
alg-d 壱大整域氏 >>907
証明 (1 ⇒ 2) の本質は
Xの冪集合 P(X)\{ ∅ } に 選択公理の選択関数 を適用すると
それが 如何なる 選択関数を採用したとしても
”写像 g:λ→X∪{∞} を
g(α ) := f( X\{g(β)|β<α} )”
なる g を 導入して
 順序数 → X∪{∞} (実質 Xのこと)
の 全単射 写像 g が構成できる
順序数と Xとの 全単射 が構成できるということは、
即ち Xに整列順序が導入できたということ
(引用終り)

簡単に補足する
いま、ミニモデルで 集合X={a,b,c,d}を考える
冪集合を作る
P(X)={ {a,b,c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d}
{a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d},
{a},{b},{c,},{d},
 ∅ }
となる
説明すると、最初にX 自身 4元の集合があり
次に、X から元が一つ減った 3元の集合があり
次に、X から元が二つ減った 2元の集合があり
次に、X から元が三つ減った 1元の集合があり
最後に 元が無くなった 空集合がある

で、Xから任意の元を取った 集合、 必ず 3元の集合が存在し
その ある3元の集合から 任意の元を取った 集合、 必ず 2元の集合が存在し
その ある2元の集合から 任意の元を取った 集合、 必ず 1元の集合が存在し
という構造を、べき集合が有している

そのべき集合の構造を うまく使ったのが >>14の alg-d 壱大整域氏の証明だと
いうことです

繰り返すが、上記有限の集合で例示したのと同じことを
順序数をうまく使うことで、無限集合に拡張し 適用したってことでね
16: 02/01(土)18:28 ID:YIkJbYsl(3/11) AAS
>>14
>なる g を 導入しているんだ
>で、写像 g の全単射を 言う
>なるほどね
いやそれ、Jechの証明のaα、つまりAの元への順序数による附番と同じことを違う言い方で言ってるだけだから
君Jechの証明を全然分かってなかったんだね
17
(3): 02/01(土)18:30 ID:YIkJbYsl(4/11) AAS
>>14
で、以下はいつ答えるの?
まさか分かってないのに分かってるふりしてたの?

(引用開始)
>順序数は、整列順序であるから
>Aに整列順序が導入できた
順序数の通常の大小関係が整列順序だとなぜAに整列順序が導入できたことになるか分かる?
(引用終了)
18: 02/01(土)18:32 ID:YIkJbYsl(5/11) AAS
>>15
>簡単に補足する
分かってない人が補足しなくていいから
19: 02/01(土)18:38 ID:YIkJbYsl(6/11) AAS
>>15
>で、Xから任意の元を取った 集合、 必ず 3元の集合が存在し
>その ある3元の集合から 任意の元を取った 集合、 必ず 2元の集合が存在し
>その ある2元の集合から 任意の元を取った 集合、 必ず 1元の集合が存在し
>という構造を、べき集合が有している
自明。
Xの冪集合とはXの部分集合全体の集合なんだから。構造を有するもクソも無い。
ナンセンスな補足は不要。
20: 02/01(土)18:48 ID:YIkJbYsl(7/11) AAS
>>15
どうでもいいけど、旧スレまだ残ってんのに逃げるように新スレに投稿すんのやめない?
21
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)19:16 ID:lDxwqd7y(14/16) AAS
>>15 さらに補足

この説明で分るように
X から最初に選ぶ元
その残りから 次に選ぶ元
その残りから 次に選ぶ元
 ・
 ・
 ・
全部、任意で良い
Xの元を すきな順番に整列できる
ということです
22
(1): 02/01(土)19:43 ID:YIkJbYsl(8/11) AAS
>>21
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。

>X から最初に選ぶ元
>その残りから 次に選ぶ元
>その残りから 次に選ぶ元
> ・
> ・
> ・
>全部、任意で良い
だから選択関数は存在さえすれば任意でよい。
君はまだ任意じゃダメな反例から逃げ続けているが。
23
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)19:46 ID:lDxwqd7y(15/16) AA×
>>15

24: 02/01(土)20:01 ID:YIkJbYsl(9/11) AAS
>>23
足し算が分かった小学生みたいにはしゃぐなよ
25: 02/01(土)20:05 ID:YIkJbYsl(10/11) AAS
>>23
はしゃぎたい気持ちは分かるが>>17にはいつ答えるの?
これに答えないと分かったとは言えないぞ はしゃぐのはまだ早い
26
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/01(土)20:06 ID:lDxwqd7y(16/16) AAS
”<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
  (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”]

『 ZF上で実数は どこまで定義可能なのか?』の前に
 Zornの補題 をやります ;p)

まず、ここから
(参考)>>14より 再録
alg-d.com/math/ac/wo_z.html
alg-d 壱大整域
トップ > 数学 > 選択公理 > 整列可能定理とZornの補題
2011年11月13日更新
整列可能定理とZornの補題

定理次の命題は(ZF上)同値.
1.選択公理
2.任意の集合Xは整列順序付け可能 (整列可能定理)
3.順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題)

証明
(3(Zornの補題) ⇒ 1(選択公理))
{X_λ}_{λ∈Λ}を非空集合の族とする.
A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ }
としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である.
即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ.
もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である.
27: 02/01(土)20:06 ID:YIkJbYsl(11/11) AAS
あと任意の選択関数ではダメな命題の例を早く答えてね
28
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)11:23 ID:5scbwZz/(1/12) AA×
>>22>>14

29: 02/02(日)12:17 ID:7z4Dw9JT(1/18) AA×
>>28>>2

30: 02/02(日)12:17 ID:7z4Dw9JT(2/18) AAS
>その後に残ったものに 整列可能定理を適用する
整列定理は整列順序の存在しか主張していない。「好きな順序で整列できる」は妄想。

>3)さて、上記2)で そもそも 整列可能定理とは
> 最後が空集合になるまで繰り返して良いとするものだった
整列定理の証明において元に対する順序数による附番aαを再帰的に定義している。
このaαの定義で選択関数を使っている。だからこの附番のしかたは選択関数で一意に定まる。
「勝手な附番を無限回繰り返して良い」は妄想。
31: 02/02(日)12:18 ID:7z4Dw9JT(3/18) AAS
> なので、整列可能定理における ”お好きなように”は、選択公理(選択関数)でも同じ
意味不明。なにその”お好きなように”って?
おまえは自分の主張すらまともに書けないのでエスパーすると as desired を誤読してるだけ。望み通り整列順序が得られるという意味だ。中学英語からやり直せ。

>余談だが、”Take your choice”(好きなものを取りなさい)goo辞書
>choice には、お好きなように という意味がある
「選択公理 axiom of choice:好き勝手に選択してよい」という連想ゲームは不成立。
君、連想ゲーム好きやね。だから間違える。
32: 02/02(日)12:18 ID:7z4Dw9JT(4/18) AAS
>なお、存在のみで 具体的でない場合も可
>例えば、実数Rの整列では、分るところのみを お好みにして、残りの 不明部分は 存在のみの公理任せも可!w ;p)
上に書いた通り無意味。

><反証>
以上、なんの反証にもなっていない。残念!
33
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)12:26 ID:5scbwZz/(2/12) AAS
>>28
(引用開始)
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。
(引用終り)

典型的な、大学数学 オチコボレさんのパターンか? ;p)
下記ですね
下記の 謎の数学者氏 いま 阪大の数学科 准教授だが
彼のいう MM mathematical maturity 数学的成熟度 が、低いね

30年前 数学科修士卒で あれから30年でこれかい?
”選択関数”の 理解が 上滑りだよ

だから、箱入り無数目で 御大が 指摘する 数学の事項が
全く理解できないんだよね、あなたは!www

誤解・無理解の選択公理(選択関数)で、ワーワー主張するけど、
その殆どが、大外しだよww ;p)

(参考)
youtu.be/78os69XZrSk?t=1
大学に入ったら数学が突然難しくなる理由。日本の数学科の問題点。

謎の数学者
2021/04/06 #数学者への道

文字起こし
0:00
はいみなさんこんにちは数学者です
0:04
えっと今回はですねこういう話をしていこうかなと思うんですね
大学に入って数学ができなくなる理由ということなんですけれどコレですねあの皆さん
経験した方あるかもしれないですけれどやはりですね あの大学に入って突然ですね数学が
できなくなるということがですね結構あるんですね

2:12
極限の厳密な定義というやつですよねエプシロンでルターによるですねえまあ極限や
微分の厳密な定義
そういった
ことを習ってさらにですねいわゆる線形代数と呼ばれているやつですね

2:40
実は
学部自体は日本だったんですけれど数学科ではなかったんですね私
学部時代機械工学を
専攻したんですけれどそれでもですね大学に入って1年目でどういう授業どういう数学
の授業を取らされたかというとやはりここにあるようなイプシロンデルタとか線形
代数そういったところからですね入っていったんですね
ところがですねやはりこれは
私の考えではいきなりですねあのこういう
ところから入るというのはちょっとですね難しいんですねとりわけつの日本の標準的な
あのすぐ高校の数学のカリキュラム
そういったものを終えたばかりで突然ですね大学に入ってイプシロン デルタ法や線形
代数というのは多少ですねちょっと多少どころじゃないかもしれない
ちょっと急激に難しくなりすぎてるんですねつまりこれゲームバランスが崩壊している
というやつなんです

いわゆる数学的成熟度 mathematical maturity と書きますけれど

4:02
日本のですね大学受験を
突破したその時点での標準的ないわゆる 数学的成熟 mathematical maturity
ではですねこういったところはなかなか太刀打ちできないんですね
単純にレベルが足りないんですドラクエで言えばですねまぁ突然ゲームが難しくなると

7:17
私のこの数学の学び方というシリーズで
今のところですねいろいろお話してますのでまだ見てない方はですね
動画説明欄にリンクが貼ってありますので見ていただきたいんですけれど

10:11
あの今回はこれで終わります
34
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/02(日)12:50 ID:5scbwZz/(3/12) AAS
>>33補足
>>28
(引用開始)
>Xの元を すきな順番に整列できる
大間違い。
順番は選択関数で一意に定まる。
(引用終り)

赤 摂也 貼っておきます
『整列可能定理 とは, 次の命題のことに他ならない.
(W) いかなる集合も、その上に適当に関係≦を定義して,整列集合にすることが出来る』

これで すきな順番に → 適当に関係≦を定義して
と書き換えれば、赤 摂也の 整列可能定理になる

”すきな順番に”が、不適当でない限り
整列可能定理の射程内ですよ ;p)

(参考)
www.jstage.jst.go.jp/article/kisoron1954/5/3/5_3_103/_article/-char/ja/
科学基礎論研究/5 巻 (1960-1962) 3 号/書誌
選択公理をめぐって
赤 摂也 1961 年 5 巻 3 号 p. 103-108

www.jstage.jst.go.jp/article/kisoron1954/5/3/5_3_103/_pdf/-char/en
選択公理をめぐって 赤 摂也 科学基礎論研究/5 巻 (1960-1962) 3 号

順序集合は
(6) 空でないいかなる部分順序集合.最小元を持つという条件 をみたすとき,整列集合といわれる.
整列可能定理 とは, 次の命題のことに他ならない.
(W) いかなる集合も、その上に適当に関係≦を定義して,整列集合にすることが出来る.
(A),(Z),(W)の同等性の証明については, たとえば拙文 〔1〕を見ていただきたい.

(余談ですが 貼ります)
定理4(Sierpinski)一般連続体仮設は選択公理を含意する.

[1]
文 献 S. Seki ; On transfinite inferences, Comm. Math. Univ. Sancti Pauli, IV, 1955
1-
あと 968 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.093s