スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
239(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/15(日)10:12 ID:lv2xCBEK(2/4) AAS
>>238 つづき
さて、用語が整備出来たところで
冒頭>>1に戻る
(引用開始)
時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)
ここまでが、一つの試行だ
つまり
1)可算無限個の箱に 実数を入れる
ある一つの数を残して、他の箱を開ける
最後に残した箱の数を予測する
2)最後に残した箱の数の予測が、ピタリと的中すれば
あなたの勝ち。的中でなければ、負け
3)よって、全事象Ω(標本空間)は、
実数列の集合 R^N s = (s1,s2,s3 ,・・・)∈R^N
を集めたものと見ることができる
さて、箱入り無数目では、s'=(s'1, s'2, s'3,・・・ )∈R^Nなる
数列のしっぽ同値を考えるという戦略を提唱する
しっぽ同値の数列を加えると
この場合には
s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N
を、一つの試行と考えることもできる
240(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/15(日)10:29 ID:lv2xCBEK(3/4) AAS
>>239 つづき
s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N
を、一つの試行と考えたとき >>1のような 決定番号dを考えることができる
もし、問題列 s = (s1,s2,s3 ,・・・) について
決定番号d を 推測できる方法があれば
問題列で、d+1以降の数列のしっぽの箱を開けて
問題列の属する 同値類を特定して
同値類代表 s'=(s'1, s'2, s'3,・・・ )を知り
決定番号の定義から(>>1)
sd=s'd
とできて sdを箱を開けずに的中できて
回答者の勝ち
ところで、このような 決定番号d は、存在するけれども
あたかも 測度論の零集合類似の性質を持つのです
つまり、決定番号dは あきらかに →∞ に発散するので
その集合は 無限集合になる
例えれば、可算無限列の長さを考えると 明らかに可算無限長で
一方、決定番号dまでの長さ 1〜d は、有限長さ
よって、d/∞=0
よって、決定番号dは、可算無限長において、先頭の長さ0部分(零集合)での 確率計算にすぎない
ここが、箱入り無数目のトリック部分
可算無限長の 先頭の長さ0部分(零集合)で
確率99/100を導く
どっこい その実 (99/100)*0=0 の議論でしかない
ここは、我々の日常が 数学的には 無限集合のNやRを想定しているが
その実、有限の数の中で暮らしている こと
それが、日常生活では 全く無意識で 当たり前になっている
真に無限大を考えることが殆ど無いので
箱入り無数目のような場合に遭遇すると
無意識の日常有限の思考に引き摺られて
無限トリックだと なかなか気づかない
そういう 箱入り無数目トリックの仕掛けなのです
243: 06/15(日)11:03 ID:Eap/oGjV(2/4) AAS
>>239
>ここまでが、一つの試行だ
はい、大間違い。
君の確率の用語確認は全くの無駄になったw
>例えばサイコロ投げの場合は、サイコロを投げるという実験そのものが試行であり
箱入り無数目の場合は、100面サイコロを投げる(=1〜100 のいずれかをランダムに選ぶ)という実験そのものが試行な
244: 06/15(日)11:07 ID:Eap/oGjV(3/4) AAS
>>239
>3)よって、全事象Ω(標本空間)は、
> 実数列の集合 R^N s = (s1,s2,s3 ,・・・)∈R^N
> を集めたものと見ることができる
試行を誤読してるので標本空間も間違う。
100面サイコロを投げることが試行だから正しい標本空間は{1,2,...,100}。
246: 06/16(月)11:28 ID:F4qr5Fw1(1) AAS
>>238-241
そもそもd_i、D_iが確率変数のとき
P(d_i<=D_i)とP(d_i<₌D)は異なる
任意のε>0に対して、
P(d_i<D)<εだとしても
P(d_i<=D_i)<εは導けない
任意のε>0に対して、
P(D_i<D)<εだから
249(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/18(水)13:52 ID:1ZjEJMOG(1) AAS
>>247 & >>239 補足
1)いま、出題の列 s = (s1,s2,s3 ,・・・) で
コイントスの 0,1 の2進値をランダム入れたとする
対するしっぽ同値列 s'=(s'1, s'2, s'3,・・・ )で
決定番号d のとき、(s1,s2,s3 ,・・,sd-1) と(s'1, s'2, s'3,・・,s'd-1)
で場合を数を考えると、sd-1≠s'd-1で無ければならないが、1からd-2は自由だから
2^(d-2)通り
2)dには上限なく 自然数全体を渡るから 決定番号の集合濃度は 2^Nで、アレフ ℵ1 非可算無限濃度
つまり、同値類は集合としてみた場合は、全体は非可算集合です
一方、有限の決定番号d の場合の数は 2^(d-2)で、有限です
3)いま、『箱入り無数目』の>>2のように
100個の決定番号d1〜d100と その最大値dmaxについて考えると
"d1〜d100 ≦ dmax"の議論は、可算無限長の 先頭の長さ dmax の有限の議論であり
それは、非可算無限中に比べれば 無限小に等しい(即ち確率零の集合の中の話)
即ち、これを 出題列を有限長さの針に例えると、有限di≦dmaxの議論は、あたかもほんの針の先の中の議論なのです
4)さて、これを>>240-241の確率分布の減衰の視点で見ると
『箱入り無数目』においては、減衰どころか 裾が増大し 全体として発散している
即ち、上記2進値のとき、dが1増えると 場合の数は2倍になる
10進値ならば10倍、n進値ならばn倍、全自然数NならばN倍、全実数Rならば非可算倍*)となる
( *)n次元R^n→n+1次元R^n+1 ということ)
5)さて、最後の例 全実数Rなら非可算倍で、ユークリッド空間で次元が違う話です(全体では無限次元空間)
『箱入り無数目』はトリックで、有限の99/100の話に矮小化される
そのトリックとは、本来は可算無限長の数列について、うまく 列先頭の有限長の話にすり替える**)
そこが、人は日常 真無限に不慣れで かつ 有限の世界に暮らしているゆえ
まんまと d1〜d100 ≦ dmaxに乗せられ騙されるのです
分かってしまえば、他愛もない子供だましにすぎないのです
**)ここを、確率論の観点から補強すると
1)0,1 の2進値を、箱に入れた場合、決定番号d とは、上記の通り
二つの数列 s = (s1,s2,s3 ,・・・) s'=(s'1, s'2, s'3,・・・ )で
d番目以降の可算無限の数が一致する
即ちその確率 P=(1/2)^N=0
2)勿論、10進値でも P=(1/10)^N=0
n進値でも P=(1/n)^N=0
3)そして、任意実数ならば、P=(1/R)^N=(0)^N (即ち(1/連続濃度)^N(可算乗)です)
『箱入り無数目』のトリックとは、可算無限長の数列の先頭の確率零の集合内の話にすり替えて
99/100を導く。結局 (99/100)x0=0 なのです■
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.020s