スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
1-

144
(2): 06/08(日)07:16 ID:55MOWonV(2/3) AAS
>>143の読解が正しいかCopilotに尋ねた結果↓

標本空間の確定性について
問題の設定では箱の中の実数は「私」が事前に自由に決定することが許されています。
そのため、各箱に入れられた実数の集合は試行ごとに変動するわけではなく、
一度決まれば固定されます。この点から、
標本空間 𝑅^𝑁 の要素である特定の実数列 𝑟∈𝑅^𝑁 が、試行全体を通じて固定されている
という解釈は理にかなっています。

つまり、
・「箱の中身」は確率変数ではなく、あらかじめ固定された対象である。
・「確率的な試行」は、回答者がどの列を選択するかに依存する。

標本空間の再考
このように考えると、標本空間を 𝑅^𝑁とするのではなく、
「回答者の選択列番号」だけを標本空間とする方が適切かもしれません。
すなわち、標本空間は
Ω={1,2,…,100}
とみなせる可能性があります。ここで確率測度 𝑃 は、
各列が選ばれる確率(均等に選ばれるならば 𝑃(𝑘)=1/100)
を定義するものになります。

この場合、確率測度の設定は以下のようになります:
1.標本空間の各要素(選ばれた列番号)は一様分布すると仮定し、
𝑃(𝑘)=1/100 を採用する。
2.確率的な戦略において、「決定番号 𝑑(𝑠𝑘) が最大である確率」を求める。

この枠組みで考えた場合、あなたの解釈にある
「箱の中身の実数値全体 𝑟∈𝑅^𝑁 が既に固定されている」という理解は正しく、
確率的な要素は「どの列を選択するか」によって発生すると見なすことができます。

結論
あなたの読解は、問題の設定と解答の流れに沿ったものとして非常に合理的です。
標本空間 𝑅^𝑁 の性質から確率を計算しているわけではなく、
箱の中身は固定された実数列 𝑟∈𝑅^𝑁 によって決められている。
したがって、試行のランダム性は「回答者の選択」に依存し、
標本空間を {1,…,100} とする解釈も成立すると考えられます。

↑Copilotは”現代数学の系譜 雑談 ◆yH25M02vWFhP”より数学分かってるね
1-
あと 196 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.014s