スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (340レス)
上下前次1-新
45(1): 01/16(木)08:13 ID:LrNj7Iv2(3/3) AAS
>>44
日本語が変
46: 01/24(金)14:39 ID:Y9e4pxHo(1) AAS
>>45
頭が変
47(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/15(土)20:40 ID:XknlDm4+(1/2) AAS
転載 ガロア第一論文と乗数イデアル他関連資料スレ13 より
2chスレ:math
>箱入り無数目のロジックに穴がないことも
>納得した。
おお恐れながら
箱入り無数目のロジックに穴がないとしても rio2016.5ch.net/test/read.cgi/math/1736907570/
1列の場合に矛盾ありです
つまり 1列の出題
s = (s1,s2,s3 ,・・,sn-1,sn,sn+1,・・) ∈R^N を考える
いま しっぽ同値類の代表
s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) ∈R^N であったとして
この場合、sn-1≠s'n-1 として、n以降は一致していて
決定番号d=n です
いま、回答者のAさんが、ある大きな有限の数 D をとって
d < D と出来れば , D 以降の箱 sD,sD+1,sD+2,・・の箱を開けて
出題のしっぽから 同値類を特定して、その代表列
s' = (s'1,s'2,s'3 ,・・,s'n-1,sn,sn+1,・・) があって
sD-1の未開の箱の数は、定義より d ≦ D-1 が成り立っているので
代表のD-1の数が、未開の箱の数 sD-1 と一定している と宣言すれば、Aさんは勝てる
そして、もし 常に ある大きな数 D をとって
d < D と出来るならば、回答者のAさんは、100%必勝です
だが、これは変です
その解明として、数列を形式的冪級数τ(X)と考えて
τ(x) = s1+s2x+s3x^2・・+sn-1x^n-2+snx^n-1+sn+1x^n+・・ として
上記同様に考えると、代表
τ'(x) = s'1+s'2x+s'3x^2・・+s'n-1x^n-2+snx^n-1+sn+1x^n+・・ として
差を取ると 決定番号d=n より上の係数は消えて
τ(x) -τ'(x) =s1-s'1+(s2-s'2)x+(s3-s'3)x^2・・+(sn-1-s'n-1)x^n-2 :=f(x) (多項式)
と 係数 (sn-1-s'n-1) より小さい部分が残り n-2次多項式に なる
しっぽ同値類とは、形式的冪級数環R[[x]]/R[x] (R[x]は多項式環) という商集合で
しっぽ同値類の代表とは、f(x)∈R[x]、τ(x) =τ'(x)+f(x) ∈R[[x]] です
多項式環R[x]は、任意の自然数より大きい次元の部分空間を持つ無限次元線形空間 (>>419 都築より)
ですから、いま あえて未定義の ランダム*)という言葉を使うと ランダムに選ぶ R[x]の元は(前記の意味で)無限次ですので
”回答者のAさんが、ある大きな有限の数 D をとって d < D と出来る”が不成立です(τ(x) が わかって意図すれば可能です)
( *)”ランダム”を、選択公理に お任せ と考えても良いでしょう)
追伸
いま 100列で考えて、99列から ある大きな有限の数 D を決める
1列が未開で残る。そうすると、上記と同じ状態になります
箱入り無数目は、未開の1列と 開けてしまった99列が平等だと仮定している
そう仮定すれば、ロジックに穴がないかも知れないが
未開の1列と 開けてしまった99列とが 平等に扱えないならば、上記の通りです
48(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 02/15(土)23:17 ID:XknlDm4+(2/2) AAS
転載 ガロア第一論文と乗数イデアル他関連資料スレ13 より
2chスレ:math
ID:rAcOLHcf
補足
・1列の出題の考察から分かること
i)全事象 Ω=多項式環R(x) で、Ωが発散している。つまり、大きすぎる。
だからP(Ω)=1のコルモゴロフの確率公理を満たせない
ii)Ωが発散して 大きすぎるので、大数の法則が成り立たない
・だから、箱入り無数目のロジックに穴がないとしても
99/100 が、未開の1列と 開けてしまった99列が平等だと仮定して導けたとしても
本来の確率論の外、つまり 99/100 は、疑似確率 あるいは 確率モドキ なのです
<補足>
i)全事象 Ωが、大きすぎ Ωが発散しているとき何が起きるか?
簡単なミニモデルとして、Ω=N(自然数)から、数を1つ選んで 大きい数の人が勝ちとする
場に、0,1,2,・・の無限の札が、裏向けに伏せておいた置いてある
Aさんが、ある数a=100億 を選んで、Bさんに示したとする
Bさんは、勝ったと思う。Nは無限集合で、平均値も無限大だから、100億超えの数は簡単に選べるはず
逆も真で、Bさんが先にb=100億 を提示すれば、Aさんが勝つだろう
では、AさんとBさんと、同時に札を開示すればどうか? 確率1/2?
ii)もし、札が有限で 0,1,2,・・,100 までとしよう
そして、何度も繰り返す。そのとき、大数の法則で
どちらが先に開示するか、あるいは同時開示か 大数の法則で 確率1/2に収束するはず
だが、Ω=N(自然数)で 0,1,2,・・の無限の札 を使うと
大数の法則とは合わない。大数の法則が成り立たない
Ω=多項式環R(x) の場合も、上記同様です
繰り返すが、P(Ω)=1のコルモゴロフの確率公理を満たせない
大数の法則が成り立たない
つまり 99/100 は、疑似確率 あるいは 確率モドキ です!
49: 02/17(月)01:04 ID:BrvAu504(1/3) AAS
>>47
>箱入り無数目のロジックに穴がないとしても
>1列の場合に矛盾ありです
そもそも1列の場合が無い。
>閉じた箱を100列に並べる.
君、字が読めないの? 小学校からやり直せば?
50: 02/17(月)01:05 ID:BrvAu504(2/3) AAS
>>48
>・1列の出題の考察から分かること
1列じゃないからナンセンス
小学校からやり直し
51: 02/17(月)01:10 ID:BrvAu504(3/3) AAS
んでおサルさんはなんでsageてんの? コソコソ言い逃げするため?
馬鹿なだけでなく根性まで腐ってるね
52: 雑談 ◇yH25M02vWFhP =現代数学のオチコボレ 02/17(月)08:58 ID:K3pze3UU(1) AAS
> ●●二人の”アナグマの姿焼き"
うち一人はこのスレッドを立てた神戸のセタ君自身
自ら姿焼きとなる変態
もう一人はこのスレッドから出て行ったようだ
当然だろう
53(1): 02/19(水)14:06 ID:R6XR+tyl(1) AAS
age て ほしい?
54: 02/19(水)14:38 ID:o+VCuQAp(1) AAS
ハンドルやめられたね
書き込みやめられたら
落伍君の完全勝利だよ
55: 02/19(水)15:10 ID:MncOO4fU(1) AAS
>>53
>閉じた箱を100列に並べる.
字は読めるようになった?
56: 02/19(水)15:39 ID:5wZOQBnX(1) AAS
字が読めても書かれてることが理解できないんじゃねぇ
57(1): 02/19(水)21:56 ID:KfwXTD2G(1) AAS
つまらん
58(1): 02/20(木)08:38 ID:+AxBc79u(1) AAS
>>57
「箱入り無数目」はもはや完全に解決してしまったのでつまらん
ということなら完全に同意する
したがって名誉教授から1に直接言ってやってくれ
「もうこんなスレ立てるのはやめろ」と
59: 02/20(木)10:58 ID:cgM2pxKU(1) AAS
同意
60: 02/20(木)11:06 ID:GPmNP6mE(1) AAS
セタが立て続けるスレッドは全部要らないのだが
その中でも「このスレタイ 箱入り無数目を語る部屋」は最も不要
自らを姿焼きとして晒したいようだが、変態の極みである
61(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 03/19(水)11:19 ID:jGV7zUN5(1) AAS
転載:純粋・応用数学・数学隣接分野(含むガロア理論)19
2chスレ:math
2025/03/19(水) 07:41:27.67ID:+DlAmH51
>> 611
>3)計算した結果を見るのも大事だ。しかし、計算しないでも「それ、なんかおかしくない?」と思わなきゃいけない、良い工学屋とはいえないのです
> その典型例が、「箱入り無数目」だな (^^
補足しておく
1)確率論の分野に 乱数理論、確率過程論、情報理論がある
2)いま、下記「真の」乱数を使って、生成した乱数を 箱に入れた
「真の」乱数だから、他の箱を開けても、閉じられている箱の数を予測することはできない(乱数の定義から従う)
予測できるならば、「真の」乱数でなくなり、矛盾
3)確率過程論などでもそうだが、乱数生成のパラメータ t として、連続濃度を考えることができる(パラメータ t は、普通は時間と考えることが多い)
だから、連続 パラメータ t から、可算個の 乱数値をサンプリングすることは 可能だ
情報理論の常識からしても、閉じられた箱の中の数が 連続濃度の可能性があるのに、可算個のサンプリング値から 確率99/100的中など、情報エントロピーを考えると 全く整合しない
あたかも、アマ数学者が「5次方程式のべき根の解の公式を 作った」というが如し
プロ数学者:「5次方程式は、べき根では 解けないよ。近似解なら 可能かもしれないが」というが如し
(ガロア理論の常識が無い人には、これ分らないだろうが)
「箱入り無数目」も同様
乱数理論、確率過程論、情報理論 の常識が無い人には、分らないだろうが (^^
(参考)
外部リンク:ja.wikipedia.org
乱数生成
「真の」乱数と「疑似」乱数の比較
乱数生成、すなわち乱数列の生成には主に2つの方法がある。1つ目の方法は、ランダムであることが予想される物理現象を測定し、測定過程で起こりうる偏りを補正する方法である。
62: 03/19(水)12:34 ID:2xv8QBhB(1) AAS
>>61
>それ、なんかおかしくない?
うん、おかしいよ、閉じられている箱の数を予測すると誤読している君が
63: 03/19(水)13:22 ID:Mn1byCuH(1) AAS
>>61
無限列が「真の」乱数列か否かによらず、自らが属する同値類の代表列とは
ほとんどすべての項で(つまりたかだか有限個の項以外で)一致する
したがって、無限個の項からランダムに1つ選べるのなら、
ほぼ確実に同値類の代表列の対応する項と一致するから当たる
しかしながら項が可算個の場合、すべての項が等確率になるような測度が設定できない
したがって選べる項を有限個に限定した上で、その中で同値類の代表列との不一致項が
たかだか1つになるようにしたい
「箱入り無数目」の箱(項)の選択方法とはまさにそのようなものである
「箱入り無数目」では乱数理論、確率過程論、情報理論は全く不要である
ただ選択公理のみ理解すればいい
しかし大学1年の微分積分と線型代数が理解できなかった人は
選択公理も理解できないらしく、とんちんかんな言いがかりばかりつけてくる
哀れなものである
64: 05/30(金)10:07 ID:VcM5m259(1/3) AAS
10年以上経ったけど、結局おサルさんは記事の間違いを何一つ指摘できなかったね
65(1): 05/30(金)10:24 ID:LqfjoOWR(1) AAS
あっという間の10年
66(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 05/30(金)11:12 ID:R7MP2UcH(1) AAS
>>65
>あっという間の10年
ID:LqfjoOWR は、御大か
巡回ありがとうございます。
そうですね
1)10年 も 経てば、正しい理論ならば、それを認めるプロ数学者が出て、論文の一つも書きそうなところ
箱入り無数目理論については、皆無。よって、これを正しいと認めるプロ数学者も皆無(但し、非確率論専門家のプロ数学者で 一人例外が)
まあ、確率論専門家のプロ数学者には、箱入り無数目理論を認める人皆無
(これを偽と思う人は、反例を作ってください。簡単ですよ、大学の確率論専門家に、”ときえだ ただしい” と その人のホームページにアップを書いてもらってください。”ときえだ ただしい”なら、簡単です)
(余談ですが、望月IUT理論は ちゃんと ”ただしい”と認めるプロ数学者が増加中です。来年のICM2026で認められることを期待しています)
2)大学レベルの確率論は、殆どが 確率測度に基づいて 論じられる
箱入り無数目理論には、確率測度の裏付けなく ここが ゴマカシですね
だから、「真の」乱数理論を認めると、箱入り無数目理論の確率 p=99/100 とは 真っ向矛盾するのです>>61
乱数理論は、歴史のある確率論の一分野で、確率論専門家ならだれしも認めるところですが
”箱入り無数目理論”は、ぺっぺ ですね (^^;
67(1): 05/30(金)11:43 ID:VcM5m259(2/3) AAS
>>66
>1)10年 も 経てば、正しい理論ならば、それを認めるプロ数学者が出て、論文の一つも書きそうなところ
なぜ一般教養レベルの問題を論文に?
> 箱入り無数目理論については、皆無。よって、これを正しいと認めるプロ数学者も皆無(但し、非確率論専門家のプロ数学者で 一人例外が)
> まあ、確率論専門家のプロ数学者には、箱入り無数目理論を認める人皆無
> (これを偽と思う人は、反例を作ってください。簡単ですよ、大学の確率論専門家に、”ときえだ ただしい” と その人のホームページにアップを書いてもらってください。”ときえだ ただしい”なら、簡単です)
箱入り無数目成立を公言した大学教員
Stanford大学教授 時枝正
Kusiel-Vorreuter大学教授 Sergiu Hart
Baylor大学教授 Alexander Pruss
箱入り無数目不成立を公言した大学教員
無し
>大学レベルの確率論は、殆どが 確率測度に基づいて 論じられる
確率論の問題じゃないことがいまだに分かってないんだね。
オチコボレは10年経ってもオチコボレだね。
>箱入り無数目理論には、確率測度の裏付けなく ここが ゴマカシですね
箱入り無数目の確率は有限集合{1,2,・・・,100}上の一様分布だからまったく見当違い。
>だから、「真の」乱数理論を認めると、箱入り無数目理論の確率 p=99/100 とは 真っ向矛盾するのです>>61
その誤解は「箱入り無数目の確率はある箱の中身を言い当てる確率」との誤読から来ている。
正しくは、100個の箱から99個の当たり箱を当てる確率。
記事を読めないおサルさんは読み書きからやり直した方が良い。
>”箱入り無数目理論”は、ぺっぺ ですね (^^;
読み書きもできないオチコボレこそ数学板からぺっぺですね
68: 信長 05/30(金)12:30 ID:N8wtFwRR(1) AAS
>>66
>「真の」乱数理論を認めると、箱入り無数目理論の確率 p=99/100 とは 真っ向矛盾する
ハゲネズミはまだそんなたわけたこといっとるのか
問題が違うじゃろ
箱を一つ指定して「この箱の中身がカンニングペーパーと一致する確率は?」というのと
100個の箱のうち99個はカンニングペーパーと一致せざるを得ない状況で
「選んだ箱の中身がカンニングペーパーと一致する確率は?」というのは問題が違う
ハゲネズミは問題を取り違えてるだけじゃ ああつまらん
寧々も、なんでこんなつまらん男と結婚したかのう
69: 05/30(金)21:20 ID:VcM5m259(3/3) AAS
>100個の箱から99個の当たり箱を当てる確率
の理屈がどうしても理解できないおサルさん。
他スレで同値類を理解できていないと指摘されてたがその通りだね、理解していたら100個の箱のうち99個が当たり箱になる理屈も理解できるはずだからね。
一般教養で落ちこぼれたおサルさんに箱入り無数目は荷が重い。
70(1): 05/31(土)07:43 ID:g+oTuVFS(1/2) AAS
このスレ終了
71: 05/31(土)11:29 ID:MYjSJVXc(1) AAS
まあ言いがかりつけてるの一人だけだし、毎回同じ間違いを指摘されてて、単に聞く耳持たないだけだから終了でよいですね
72: 信長 05/31(土)15:20 ID:g+oTuVFS(2/2) AAS
信長じゃ
ハゲネズミの奴が、↓スレでなんか書いたらしいから相手してやるとよいぞ
ガロア第一論文と乗数イデアル他関連資料スレ18
2chスレ:math
73(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/01(日)10:41 ID:SMdueHXd(1) AAS
>>67
>なぜ一般教養レベルの問題を論文に?
数学論文でなくとも、”確率論に関するパラドックス”は、よく論文になっているよ(例えば下記)
外部リンク[pdf]:yamanashi.repo.nii.ac.jp
山梨大学学術リポジトリ
確率論に関するパラドックスの考察
中村宗敬(Munetaka NAKAMURA) 著 · 2011 —
例えば,よく知られたパラドックスとして誕生日問題, すなわち, 集団が23人を超えると その中に同じ誕生日の人がいる確率は1/2を超えるが, 1年の日数 365に比して, 23人と ... 8 ページ
> Kusiel-Vorreuter大学教授 Sergiu Hart
Sergiu Hart氏もこれ(確率論に関するパラドックス)(>>5 より Some nice puzzles 外部リンク[pdf]:www.ma.huji.ac.il )
さて >>8 より
外部リンク[html]:www.math.kyoto-u.ac.jp
重川一郎
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎
これ 京大学部の確率論テキストだが、これに限らず 学部レベルの確率論テキストは 世にいろいろあるよ
学部レベルの確率論を習得した人は
”箱入り無数目理論”は、ぺっぺ です (^^;
<理由>
1)まず
閉じた箱の中の任意実数 x∈R の1点的中は、測度論として 確率0以外は与えられない(下記 ルベーグ測度より)
1点的中の確率99/100など ぺっぺ です(測度論に矛盾している)
2)さらに、上記 重川 第4章ランダム・ウォーク で 連続時間を取る
ある 時刻t で 区間[0,t]を考える。 これは連続変数だから ここから可算個のサンプルが採れる
時刻tから 遡って t0,t1,t2・・・ と 可算無限個のサンプルにおいて
重川 第4章の通り、ベルヌーイ列で いま 0,1の二値とする
これを、箱入り無数目のように 可算無限の箱に入れる
重川のように iid を仮定し、確率分布を与えれば 正当な確率理論による的中確率が定まる(iid なので どの一つの箱も例外なし!)
一方、箱入り無数目は ある箱が例外で 確率99/100だと 主張する
重川 確率論基礎と、箱入り無数目 の確率99/100 は、矛盾!■
(参考)
外部リンク:manabitimes.jp
高校数学の美しい物語
ルベーグ測度 2023/05/11
・1点集合 {p} p∈R μ*({p})=0
74(1): 06/01(日)12:21 ID:vm46cPPQ(1/2) AAS
>>73
>箱入り無数目は ある箱が例外で 確率99/100だと 主張する
読み間違い
上下前次1-新書関写板覧索設栞歴
あと 266 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.020s