確率は測度論を使うべきか? (215レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
133(1): 2024/10/21(月)18:21 ID:jzKissk0(8/11) AAS
>>129
バナッハ・タルスキーのパラドックスでは、
「1つの球(可測)」→「複数の集合に分解(非可測)」→「2つの球(可測)」
と変形される。途中は非可測だが、最初と最後は可測である。もしこれが
「1つの球(可測)」→「複数の集合に分解(非可測)」→「2つの球モドキ(ともに非可測)」
だったら、最後に得られる2つの「球モドキ」が非可測なので、
そんなものに分解できたとしても、パラドックスとしての説得力が弱まってしまう。
136: 2024/10/21(月)18:30 ID:HtKbv7V9(37/45) AAS
>>133
ああ、そういうこと?
実は双曲平面上でもバナッハ・タルスキーのパラドックスが構築できる
そしてそこではなんと選択公理すら要らない
もう目に見える集合が合同変換によって2つになっちゃうのである
その結果として、双曲平面全体を1とする測度は入れられず
問題の集合は双曲平面全体を無限大とする測度では、やっぱり測度無限大である
でもタネ(階数2以上の自由群と木構造)を知ると面白いけどな
ja.wikipedia.org/wiki/%E3%83%8F%E3%82%A6%E3%82%B9%E3%83%89%E3%83%AB%E3%83%95%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.013s