確率は測度論を使うべきか? (215レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
26: 2024/10/19(土)12:16 ID:NmU9taco(1/6) AAS
回答者がやることは「箱の中身を言い当てること」
だと思いがちだが、これは時枝戦術のアルゴリズムの
副次的な効果にすぎない。回答者が本当にやっていることは、
i∈{1,2,3,…,100} を選ぶことだけである。
そして、回答者が i を選んだら、(s,i) の組が定まる。
この (s,i) から時枝戦術のアルゴリズムによって、
一意的な手続きが進行し、回答者は1つの箱の中身を推測する。
この「1つの箱」も (s,i) に依存して一意的に決まっている。
27: 2024/10/19(土)12:19 ID:NmU9taco(2/6) AAS
・ 出題者は s = (s1,s2,s3 ,・・・) を出題する。
・ 回答者は当てずっぽうに1つの箱を選んで、
その中身を当てずっぽうに推測する。
↑よくある勘違い。問題設定を誤読している。
・ 出題者は s = (s1,s2,s3 ,・・・) を出題する。
・ 回答者は i∈{1,2,…,100} を選ぶ。
↑これが正しい設定。
28: 2024/10/19(土)12:25 ID:NmU9taco(3/6) AAS
・ 出題者は s = (s1,s2,s3 ,・・・) を出題する。
・ 回答者は i∈{1,2,…,100} を選ぶ。
このようにして s と i が出揃ったら、(s,i) の組が得られる。
時枝戦術のアルゴリズムは、(s,i) が決まれば一意的な手続きで進行する。
(s,i) に応じて一意的に「1つの箱」が決まり、それ以外の箱は全て開封され、
そこで得られた情報から、残った「1つの箱」の中身を回答者は推測する。
そして、ここで推測される値も、(s,i) に依存して一意的に決まっている。
29: 2024/10/19(土)12:27 ID:NmU9taco(4/6) AAS
すなわち、このゲームを2回やったとき、
偶然にも同じ (s,i) という状況になった場合、
回答者が残す「1つの箱」は2回のゲームで全く同じ箱であるし、
その中身がどんな値であるかも、
2回のゲームで全く同じ値を推測することになる。
30: 2024/10/19(土)12:30 ID:NmU9taco(5/6) AAS
このあたりの事情を誤読していると、
確率過程を使おうが何だろうが、正しい結論は得られない。
・ 回答者は当てずっぽうに1つの箱を選んで、
その中身を当てずっぽうに推測する。
と誤読している場合、確率過程も何もいらなくて、
回答者が箱の中身を言い当てる確率はゼロである。
だが、時枝記事はそんな問題設定ではない。
回答者は i∈{1,2,…,100} を選ぶだけである。
「箱の中身を推測する」という行動は、i を選んだあとに
時枝記事のアルゴリズムから得られる副次的な効果にすぎない。
31: 2024/10/19(土)12:33 ID:NmU9taco(6/6) AAS
そして、i を選んだあとの時枝記事のアルゴリズムでは、
回答者が残す「1つの箱」は選択公理を経由して決まり、
そこで推測する「値」も選択公理を経由して決まる。
この時点で、「回答者の推測が当たる」という事象は
非可測になってしまう。
すると、回答者の推測が当たる確率は定義できないので、
「回答者の推測が当たる確率はゼロである」
とは言えない。もちろん
「回答者の推測が当たる確率は正である」
とも言えない。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.011s