確率は測度論を使うべきか? (215レス)
確率は測度論を使うべきか? http://rio2016.5ch.net/test/read.cgi/math/1728961710/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
43: 132人目の素数さん [] 2024/10/20(日) 10:41:29.01 ID:7YsdmV1A >>39-42 ご苦労さまです >それを言うなら、素人同士の議論は永久に「不毛」です。でしょ…。 これはうまい ザブトン1枚 >喧嘩両成敗(?) 必要は、発明の母 (会話で使えることわざ辞典 イミダス https://imidas.jp/proverb/detail/X-02-C-27-4-0009.html) 議論は、数学の父 (いま作った”ことわざ”。議論が喧嘩に見えてもw) >論破ゲームwww 昔、ロンパールーム (https://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%B3%E3%83%91%E3%83%BC%E3%83%AB%E3%83%BC%E3%83%A0) 今、SNS ”はい 論破!”ゲーム by ヒロユキ http://rio2016.5ch.net/test/read.cgi/math/1728961710/43
45: 132人目の素数さん [] 2024/10/20(日) 17:24:27.43 ID:7YsdmV1A ご苦労さまです 場合の数が分らない ど素人がいます 例えば 1〜6 の札から、ランダムに1枚抜く確率 6通りだから1/6と即断する しかし、1〜6 とは限らない 例えば、X=1〜6 に対し、札はその二乗あるとする X X^2 1 1 2 4 3 9 4 16 5 25 6 36 となって、札の合計 91枚 この場合 1の札の確率 1/91 6の札の確率 36/91 このように 札が6通りとしても 背景の各札の枚数(確率分布)が問題となるのです これを、何度説明しても 分らない 確率ど素人がいます http://rio2016.5ch.net/test/read.cgi/math/1728961710/45
46: 132人目の素数さん [] 2024/10/20(日) 17:26:09.76 ID:7YsdmV1A >>45 タイポ訂正 しかし、1〜6 とは限らない ↓ しかし、1/6 とは限らない http://rio2016.5ch.net/test/read.cgi/math/1728961710/46
48: 132人目の素数さん [] 2024/10/20(日) 18:32:15.98 ID:7YsdmV1A エテ公の餌に引っかかる数学者もいるので、怖い もちろん、確率論の専門家ではないが・・ http://rio2016.5ch.net/test/read.cgi/math/1728961710/48
50: 132人目の素数さん [] 2024/10/20(日) 20:14:24.71 ID:7YsdmV1A 基礎論婆は、あなた 弥勒菩薩さまのおかげで、つれと激論になって いま例のスレで、三つ巴の論戦中です なので、忙しいようですw ;p) http://rio2016.5ch.net/test/read.cgi/math/1728961710/50
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s