分からない問題はここに書いてね 472 (993レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
916(1): 05/30(金)16:10 ID:GVV6rT6D(1) AAS
∫_{|z|=r} 1 / (z - 1) dz について質問です。
「d/dz log(z - 1) = 1/(z - 1) であるが、 log(z - 1) は多価関数なので注意が必要。
r > 1 のとき、 z - 1 の偏角は 0 から増加して、 z = 1 + √(r^2 - 1) で π/2 になり、 z = -r で π になる。残りの半周では、偏角は π から 2 * π に変化する。
したがって求める積分の値は 2 * π * i となる。」
なぜこの場合 2 * π * i になるのですか?コーシーの定理は使わずに説明してください。
922(1): 05/31(土)06:59 ID:h7jWjkRr(1/2) AAS
>>916
z=rexp(iθ), θ:0→2π
w=z-1=Rexp(iΘ), (R,Θ):(r-1,0)→(r-1,2π)
dz=dw=(R'exp(iΘ)+iΘ'exp(iΘ))dθ
∮_Cdz/(z-1)=∮[0,2π](R'exp(iΘ)+iΘ'exp(iΘ))dθ/Rexp(iΘ)
=∮[0,2π](R'/R+iΘ')dθ
=[logR+iΘ][0,2π]
=2πi
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.038s