[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
887(3): 2024/01/01(月)13:16 ID:TD2kDzWu(1/4) AAS
>>886
>ネクラソフ予想って中島、吉岡も解決してなかったか?
不勉強でしたが、そうみたいです
詳しくないので、下記の立川裕二氏 ”Supersymmetry: an idea connecting Physics and Mathematics”
などからの抜粋を貼っておきます
(参考)
外部リンク:en.wikipedia.org
Nikita Nekrasov
Honours and awards
In 2008 together with Davesh Maulik, Andrei Okounkov and Rahul Pandharipande he formulated a set of conjectures relating Gromov–Witten theory and Donaldson–Thomas theory, for which the four authors were awarded the Compositio Prize in 2009.
外部リンク:en.wikipedia.org
Hiraku Nakajima
He proved Nekrasov's conjecture.
外部リンク[html]:member.ipmu.jp
立川裕二 OHPフィルムとビデオ録画
外部リンク[pdf]:member.ipmu.jp
Supersymmetry: an idea connecting Physics and Mathematics
Biennial meeting of Kavli Institutes, NYC, June, 2016
Aimed at scientists who are not physicists. I am not sure how successful I was. The version really used at the meeting was more abbreviated.
Supersymmetry Yuji Tachikawa 2016
An idea connecting Physics and Mathematics
(最後の方のページより)
1988 (Witten)
Supersymmetric
Yang-Mills
↓
1994(Seiberg-Witten)
Supersymmetric
Maxwell
2002 Nekrasov (a physicist) reformulated this derivation in a way understandable to mathematicians
2003 That reformulation was then proved by mathematicians Nakajima, Yoshioka; Braverman, Etingof; Nekrasov, Okounkov
2009 Based on these results, Alday, Gaiotto and I thought more about physics and found a mathematical conjecture
2012 The conjecture was proven by mathematicians, Shiffman and Vasserot; Maulik and Okounkov
(最後のページに面白い図解があるよ)
蛇足
外部リンク:member.ipmu.jp
場の量子論の数学と2次元4次元対応
中央大の「数学との遭遇」シリーズ第67回(2016年10月28日/29日)の講演のひとつとして、に数学者むけにいい加減な話をしました。
外部リンク[pdf]:www.math.chuo-u.ac.jp
第67回 AGT 対応の数学と物理 2016年10月28日(金),10月29日(土)
場の量子論の数学と二次元四次元対応:立川裕二氏(東大・Kavli IPMU)
インスタントンのモジュライ空間のコホモロジーと表現論:中島啓氏(京大・数理研)
888(1): 2024/01/01(月)13:40 ID:bzFgegFJ(1/2) AAS
>>887
>不勉強でした
そもそも、大阪君は生まれてから一度も「勉強」したことないだろ
949: 2024/01/11(木)17:44 ID:1SR0Rq8E(8/11) AA×
>>887

ID:kD74UmIv
952: 2024/01/11(木)22:25 ID:1SR0Rq8E(10/11) AAS
889 名前:132人目の素数さん[sage] 投稿日:2024/01/01(月) 15:22:46.75 ID:kD74UmIv [2/2]
>>887
(>>888の続き)
[第4段]:Case1)、n<A のとき。このとき 1/A<1/n だから、
e^i<(1+1/n)^n<lim_{x→+∞}(1+1/x)^x=e
であって、矛盾する。
Case2)、n>A のとき。
eの定義から e<2.72 だから 8e<8×2.72=21.76。
また、πの定義から π>3,14 だから 7π>7×3.14=21.98。
よって、 8e<7π であって、π>e>1 から Aの定義に注意すれば 1/A>1/7。
故に、3<A<7 であって、正の整数nについて n≧7。1/7<1/A<1/3 だから、
e^i<(1+1/A)^n<(1+1/3)^n=(1+1/3)^3×(1+1/3)^{n-3}<e×(1+1/3)^{n-3}、
よって、e^{i+3}<e×(1+1/3)^n、
kを正の整数とする。
e^{i+3k)}<(1+1/3)^n=(1+1/3)^3×(1+1/3)^{n-3k})<e×(1+1/3)^{n-3k}
とすれば、e^{i+6k}<e×(1+1/3)^n<e×(1+1/3)^{n-3k}<(1+1/3)^n。
故に、kについて小さい方から帰納的に同様な評価を有限回繰り返せば、
或る正の整数kが存在して、j≧k のとき e^{i+3j}<(1+1/3)^n。
しかし、これは、或る j≧k なる整数jが存在して e^{i+3j}>(1+1/3)^n なることに反し矛盾する。
Case3)、n=A のとき。このときCase2)の議論に n=A を適用して同様に考えれば、
e^i<(1+1/n)^n<lim_{x→+∞}(1+1/x)^x=e
であって、矛盾が生じる。
[第5段]:Case1)、Case2)、Case3)から起こり得るすべての場合で矛盾する。
故に、背理法によりlog(π)は無理数である。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.060s