[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
553
(4): 2023/07/09(日)19:51 ID:tLoMzqUS(5/7) AAS
>>551
>どちらが勝つか決定するアルゴリズムが存在しないゲームって興味深いですね

それは面白いね
下記の決定性公理:もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人位相的な完全情報ゲーム(英語版)について(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する
と両立するのだろうか?
ゲーム理論には詳しくないので分からないのだが・・

(参考)
外部リンク:ja.wikipedia.org
決定性公理(axiom of determinacy、AD と略される)とは、1962年にミシェルスキー(英語版)、ユゴー・スタインハウス(英語版)によって提案された集合論の公理である。
もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人位相的な完全情報ゲーム(英語版)について(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する。

決定性公理は公理的集合論の選択公理と矛盾する。決定性公理を仮定すると、実数の任意の部分集合について「ルベーグ可測である」「ベールの性質を持つ」「完全集合性を持つ」ことが従う。とくに実数の任意の部分集合が完全集合性を持つことは「実数の部分集合で非可算なものは実数と同じ濃度を持つ」という弱い形の連続体仮説が成り立つことに換言される。 選択公理からは「実数の部分集合でルベーグ可測でないものが存在する」ことが導かれるが、この事実からも決定性公理と選択公理が相容れないことが分かる。

つづく
554: 2023/07/09(日)19:51 ID:tLoMzqUS(6/7) AAS
>>553
つづき

スタインハウスとミシェルスキーが AD を考えた動機はその帰結の興味深さ、そして集合論の最小の自然なモデル L(R) において成り立ちうることにあった。これは選択公理 (AC) の弱い形のみを許容し、全ての実数と全ての順序数を含むものである。AD からのいくつかの帰結はステファン・バナフとスタニスワフ・マズールとモートン・デイビスによってそれまでに得られていた定理から従う。 ミシェルスキーとStanis?aw ?wierczkowskiは次の事実の研究に貢献した: AD は実数からなる集合が全てルベーグ可測であることを導く。 続いて、ドナルド・A・マーティン などによって特に記述集合論において、さらなる重要な結論が得られている。1988年には、ジョン・R・スティール and ヒュー・ウッディン が長期研究の結果を報告している。彼らは?0{\displaystyle \aleph _{0}} と類似な性質をもつ不可算基数の存在を仮定して、ミシェルスキーとスタインハウスがもともと予想していた L(R) において AD が真になるということを示した。

(引用終り)
以上
560
(1): 2023/07/10(月)06:36 ID:xZtpXfEL(1) AAS
>>553
定義確認しような
定義が読めないんなら黙ろうな
恥かくだけだぞ
607
(2): 2023/07/12(水)11:24 ID:GUggp0iI(2/8) AAS
>>560
>>>553
>定義確認しような
>定義が読めないんなら黙ろうな
>恥かくだけだぞ

遠隔ですまんが
イチャモン付ける相手が違うぞw

>>551
>どちらが勝つか決定するアルゴリズムが存在しないゲームって興味深いですね
 vs
>>553
決定性公理:もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人位相的な完全情報ゲーム(英語版)について(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する

1)この二つの比較で、”定義確認しような”というべきはどっち?w
2)なお、>>551の発言をするときは
 >>553程度のツッコミは想定しておかないと
 シャレにならんということだよw
615
(1): 2023/07/12(水)18:29 ID:GUggp0iI(7/8) AAS
>>614 補足

 >>607より再録
 なお、>>551の発言をするときは
 >>553程度のツッコミは想定しておかないと
 シャレにならんということだよw
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s