[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
881: 2023/12/31(日)20:27 ID:tcCu4sYc(1/4) AAS
生姜とニンニク、免疫力アップに良いみたいですね
外部リンク:joulelife.jp
ヘルスハッカー
寒い冬は生姜とニンニクで免疫力がアップ!主な成分と効果や効能をご紹介!相性もよく相乗効果も期待!
2023年11月15日
寒い季節になりました。冷え性・肩こり・風邪など、不調になりやすいですね。
これらの不調は寒さによる血行不良や免疫力低下が原因かもしれません。
そんなときには古くから漢方にも用いられる薬効成分の高い食材や生姜とニンニクに注目です。
調味料や薬味として使用するだけでなく、体調不良改善のために意識的に取り入れてみるのも良いです。
血行を促進し、冷えを改善することで免疫力も高まります。
寒い冬は生姜とニンニクで免疫力アップ!
生姜もニンニクも、鍋の薬味として活用できますね!
生姜とニンニクを一緒に取ると相乗効果も期待できます。ぜひこの冬は生姜とニンニクを常備してみてください。
882: 2023/12/31(日)20:31 ID:tcCu4sYc(2/4) AAS
(メモ)
位相的場の理論:4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している
サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている
外部リンク:ja.wikipedia.org
位相的場の理論
位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはTQFTは、位相不変量を計算する場の量子論である。[1]
TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。
物性物理学では、位相的場の理論は、分数量子ホール効果や、ストリングネット(英語版)凝縮状態や他の強相関量子液体(英語版)状態のような、トポロジカル秩序(英語版)の低エネルギー有効理論である。
外部リンク:en.wikipedia.org
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants.
883: 2023/12/31(日)20:40 ID:tcCu4sYc(3/4) AAS
これも・・
ウラジーミル・ドリンフェルト:量子群、量子重力へのアプローチとして自己双対な対象の研究から来た
「有限体上の一変数代数関数体の GL2 に関するラングランズ予想の証明および、量子逆散乱法による量子群の構成」
フィールズ賞受賞
外部リンク:ja.wikipedia.org
ウラジーミル・ドリンフェルト
ウクライナの数学者。現在はシカゴ大学教授。
指導教授はユーリ・マニン。1988年にステクロフ数学研究所において Dr.Sc. を取得した。1990年にフィールズ賞を、2018年にはウルフ賞数学部門、2023年にはショウ賞数学部門を受賞した。フィールズ賞受賞理由は、「有限体上の一変数代数関数体の GL2 に関するラングランズ予想の証明および、量子逆散乱法による量子群の構成」である。
外部リンク:ja.wikipedia.org
量子群
量子群の第二の双クロス積(英語版)のクラスの背後にある直観は異なり、量子重力へのアプローチとして自己双対な対象の研究から来た[2]。
ドリンフェルト・神保型の量子群
q = 0 における量子群
詳細は「結晶基底(英語版)」を参照
柏原正樹は量子群の q → 0 の極限の振る舞いを研究し、結晶基底(英語版)と呼ばれる非常に良い性質を持つ基底を発見した。
885(1): 2023/12/31(日)23:31 ID:tcCu4sYc(4/4) AAS
メモ追加
外部リンク:ja.wikipedia.org
アンドレイ・オクンコフ
2006年、フィールズ賞受賞
業績としてWitten予想の別証明
Gopakumar-Marino-Vafa公式の証明、曲線の局所Donaldson-Thomas理論、Nekrasov予想の解決。
外部リンク:en.wikipedia.org
Andrei Okounkov
Work
He has worked on the representation theory of infinite symmetric groups, the statistics of plane partitions, and the quantum cohomology of the Hilbert scheme of points in the complex plane.
Okounkov, along with Pandharipande, Nikita Nekrasov, and Davesh Maulik, has formulated well-known conjectures relating the Gromov–Witten invariants and Donaldson–Thomas invariants of threefolds.
外部リンク:ja.wikipedia.org
マリアム・ミルザハニ
2014年に彼女はフィールズ賞を受賞
業績
ミルザハニはリーマン面のモジュライ空間の理論についていくつかの業績を上げている。ミルザハニは初期の研究において、所与の類を持つモジュライ空間の大きさを表現する公式を、境界成分の多項式として発見している。これにより彼女は、モジュライ空間におけるトートロジー集合の交差数に関するエドワード・ウィッテンの推測に新たな証明を与え、またコンパクトな双曲面における単純な閉測地線の長さに関する漸近線の公式を導き出した
外部リンク:en.wikipedia.org
Maryam Mirzakhani
In her thesis, Mirzakhani found a volume formula for the moduli space of bordered Riemann surfaces of genus
g with n geodesic boundary components. From this formula followed the counting for simple closed geodesics mentioned above, as well as a number of other results. This led her to obtain a new proof for the formula discovered by Edward Witten and Maxim Kontsevich on the intersection numbers of tautological classes on moduli space.[6][30]
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.039s