[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
65
(1): 2023/07/01(土)17:34:16.61 ID:uNBgRQTB(23/39) AAS
>>63
馬鹿呼ばわりしろとはいってないが

だいたい、YJを「馬鹿」呼ばわりしたあんたがそれいうか?
自分こそ新左翼の暴力活動家だろ

自分の行為に後ろめたさを感じない?

鬼畜だな
152: 2023/07/02(日)09:41:48.61 ID:cNGWG32s(29/81) AAS
OTのような売数学奴にだけは
百万遍死んでも絶対になりたくないもんだ
289
(1): 2023/07/03(月)16:42:06.61 ID:En4/yMUN(3/6) AAS
>n≧2のときnは或る m≧1 により n=2m と表され、C^n は R^{2m} と見なせる

これがおっちゃんのフィンガープリント。
複素数空間を常に実2m次元と考えたがる。
しかも初歩からとんでもない誤解をしている。
333
(1): 2023/07/04(火)11:13:59.61 ID:/K4mC13y(3/8) AAS
>>17
>L^2拡張定理の応用面に重点を置いた講演をした。

独り言ですが
下記が、理解できてないが
なんか面白そうですね
L2 extensionが、L2拡張なのでしょうかね?(^^

(参考)
外部リンク:en.wikipedia.org
Ohsawa?Takegoshi L2 extension theorem

In several complex variables, the Ohsawa?Takegoshi L2 extension theorem is a fundamental result concerning the holomorphic extension of an
L^{2}-holomorphic function defined on a bounded Stein manifold (such as a pseudoconvex compact set in
\mathbb {C} ^{n} of dimension less than n) to a domain of higher dimension, with a bound on the growth.
It was discovered by Takeo Ohsawa and Kensho Takegoshi in 1987,[1] using what have been described as ad hoc methods involving twisted Laplace?Beltrami operators, but simpler proofs have since been discovered.[2] Many generalizations and similar results exist, and are known as theorems of Ohsawa?Takegoshi type.

See also
・Suita conjecture
note
1. Ohsawa & Takegoshi (1987)
2.Siu (2011)
516: 2023/07/08(土)16:04:52.61 ID:5D12U7Zc(20/22) AAS
>>507
「箱入り無数目」も
「箱の中身が*である確率を求める問題」
じゃないって気づけよ

知裸見媚平(ちらみこぴへい)クン
678: 2023/07/15(土)08:23:04.61 ID:CXkqKxb9(15/29) AAS
中野[N]と藤木[Fk]は弱擬凸領域上で
Andreotti-Vesentini流の完備K\"ahler多様体上の消滅定理を踏まえて、
解析空間のブローダウン条件を解明した。
692
(1): 2023/07/15(土)08:43:56.61 ID:CXkqKxb9(28/29) AAS
>>691
そこで定理1の応用を捜したところ、より詳しく次の事実が判明した。
820: 2023/10/28(土)23:30:56.61 ID:5Ldn12NP(2/3) AAS
>>819
ありがとう

外部リンク[html]:dept.math.lsa.umich.edu
Mattias Jonsson Department of Mathematics, University of Michigan,
(I am a professor of mathematics at the University of Michigan)
My research spans across some (but not all!) parts of dynamics, geometry and analysis. In analysis and geometry one usually works with real or complex numbers, but it is also possible to use, for instance, p-adic numbers. Doing so leads to non-Archimedean analysis and geometry, in honor (dishonor?) of Archimedes of Syracuse.

One of my main interests is in how non-Archimedean objects, such as Berkovich spaces, can be used to study problems where the original problem is phrased in terms of complex or rational numbers. Examples include singularities (of psh functions) in complex analysis and the growth of the arithmetic complexity (height) of orbits of certain polynomial, discrete-time, dynamical systems. I am also interested in developing non-Archimedean geometry in a way parallel to complex geometry.

Here is a list of my publications and some lecture notes. For my preprints, see the arXiv. See also google scholar.

外部リンク[3699]:arxiv.org
Mathematics > Algebraic Geometry
[Submitted on 16 Nov 2010 (v1), last revised 20 Oct 2011 (this version, v3)]
Valuations and asymptotic invariants for sequences of ideals
Mattias Jonsson, Mircea Mustata
We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.
v3: minor changes, this is the final version, to appear in Ann. Inst. Fourier (Grenoble)
825: 2023/11/17(金)18:15:46.61 ID:iqg0G7R1(1) AAS
>>819
GuanとYuanが解いた。
969: 2024/01/14(日)02:22:29.61 ID:WT7Agqld(13/44) AAS
固有空間
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.050s