[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
973: 2023/07/31(月)10:12 ID:jznoxopE(23/50) AAS
 We shall give the proof of Theorem 1.1 in this section for the convenience of the reader, after recalling the basic L^2 
 estimates in a general setting. 
974: 2023/07/31(月)10:13 ID:jznoxopE(24/50) AAS
 Let (M, g) be a complete Hermitian manifold of dimension n and let 
 (E, h) be a holomorphic Hermitian vector bundle over M. 
 Let C^{p,q}(M, E) denote the space of E-valued C^∞ (p, q)-forms on M 
 and letC^{p,q}_0(M, E) = {u ∈ C^{p,q}(M, E); suppu is compact}. 
975: 2023/07/31(月)10:15 ID:jznoxopE(25/50) AAS
 Given a C^2 
 function φ : M → R, let L^{p,q}_{(2),φ}(M, E) (= L^{p,q}_{(2),g,φ}(M, E)) 
 be the space of E-valued square integrable measurable (p, q)-forms on 
 M with respect to g and he^{−φ} 
 . 
976: 2023/07/31(月)10:17 ID:jznoxopE(26/50) AAS
 The definition of L^{p,q}_{(2),φ}(M, E) will be 
 naturally extended for continuous metrics and continuous weights. 
977: 2023/07/31(月)10:27 ID:jznoxopE(27/50) AAS
 Recall that L^{p,q}_{(2),φ}(M, E) is identified with the completion of  
 C^{p,q}_0(M, E) 
 with respect to the L^2 norm 
 ||u||φ := (∫_Me^{−φ}|u|^2_{g,h}dVg)1/2. 
 Here dVg := 1/n!ω^n 
 for the fundamental form ω = ω_g of g. 
978: 2023/07/31(月)10:29 ID:jznoxopE(28/50) AAS
 More explicitly, when E is given by a system of transition functions eαβ with 
 respect to a trivializing covering {Uα} of M and h is given as a system 
 of C∞ positive definite Hermitian matrix valued functions hα on Uα satisfying hα =t 
 eβαhβeβα on Uα ∩ Uβ, |u|2 
 g,hdVg is defined by tuαhα ∧ ∗uα, 
 where u = {uα} with uα = eαβuβ on Uα ∩ Uβ and ∗ stands for the 
 Hodge’s star operator with respect to g. We put ∗¯u = ∗u so that 
 tuαhα ∧ ∗uα =tuαhα ∧ ∗¯uα 
979: 2023/07/31(月)10:30 ID:jznoxopE(29/50) AAS
 Let us denote by ¯∂ (resp. ∂) the complex exterior derivative of 
 type (0, 1) (resp. (1, 0)). Then the correspondence uα 7→ ¯∂uα defines 
 a linear differential operator ¯∂ : C 
 p,q(M, E) → C 
 p,q+1(M, E). The 
 Chern connection Dh is defined to be ¯∂ + ∂h, where ∂h is defined by 
 uα 7→ h 
 −1 
 α ∂(hαuα). Since ¯∂ 
 2 = ∂ 
 2 
 h = ∂ 
 ¯∂ + ¯∂∂ = 0, there exists a 
 E 
 ∗ ⊗ E-valued (1, 1)-form Θh such that D2 
 hu = Θh ∧u holds for all u ∈ 
 C 
 p,q(M, E). Θh is called the curvature form of h. Note that Θhe−φ = 
 Θh+IdE ⊗∂ 
 ¯∂φ. Θh is said to be positive (resp. semipositive) at x ∈ M 
 if Θh = 
 ?n 
 j,k=1 Θjk¯dzj ∧ dzk in terms of a local coordinate (z1, . . . , zn) 
 LEVI PROBLEM UNDER THE NEGATIVITY 5 
 around x and (Θjk¯(x))j,k = (Θµ 
 νjk¯ 
 (x))j,k,µ,ν is positive (semipositive) in 
 the sense (of Nakano) that the quadratic form 
 ?( 
 ? 
 µ 
 hµκ¯Θ 
 µ 
 νjk¯ 
 )(x)ξ 
 νj ξ 
 κk 
 is positive definite (resp. positive semidefinite). 
980: 2023/07/31(月)10:32 ID:jznoxopE(30/50) AAS
 Θ > 0 (resp. ≥0) for an E^∗ ⊗ E-valued (1,1)-form Θ will mean the positivity (resp. 
 semipositivity) in this sense. 
981: 2023/07/31(月)10:32 ID:jznoxopE(31/50) AAS
 Whenever there is no fear of confusion, as well as the Levi form ∂¯∂φ 
 of φ, Θ_h will be identified with a Hermitian form along the fibers of 
 E ⊗ TM, where TM stands for the holomorphic tangent bundle of M. 
982: 2023/07/31(月)10:33 ID:jznoxopE(32/50) AAS
 By an abuse of notation, ¯∂ (resp. ∂he−φ ) will also stand for the maximal closed extension of ¯∂|C 
 p,q 
 0 
 (M,E) 
 (resp. ∂he−φ |C 
 p,q 
 0 
 (M,E) 
 ) as a closed 
 operator from L 
 p,q 
 (2),φ 
 (M, E) to L 
 p,q+1 
 (2),φ 
 (M, E) (resp. L 
 p+1,q 
 (2),φ 
 (M, E)). The 
 adjoint of ¯∂ (resp. ∂he−φ ) will be denoted by ¯∂ 
 ∗ = ¯∂ 
 ∗ 
 g,he−φ (resp. ∂ 
 ∗ 
 he−φ ). 
 We recall that ∂ 
 ∗ 
 he−φ = −∗¯∂∗¯ holds as a differential operator acting on 
 C 
 p,q(M, E), so that ∂ 
 ∗ 
 he−φ will be also denoted by ∂ 
 ∗ 
 . By Dom¯∂ (resp. 
 Dom¯∂ 
 ∗ 
 ) we shall denote the domain of ¯∂ (resp. ¯∂ 
 ∗ 
 ). 
983: 2023/07/31(月)10:34 ID:jznoxopE(33/50) AAS
 We put 
 H 
 p,q 
 (2),φ 
 (M, E)(= H 
 p,q 
 (2),g,φ 
 (M, E)) = 
 Ker ( 
 ¯∂ : L 
 p,q 
 (2),φ 
 (M, E) → L 
 p,q+1 
 (2),φ 
 (M, E) 
 ) 
 Im ( 
 ¯∂ : L 
 p,q−1 
 (2),φ 
 (M, E) → L 
 p,q 
 (2),φ 
 (M, E) 
 ) 
 and 
 H p,q 
 φ 
 (M, E) = Ker ¯∂ ∩ Ker ¯∂ 
 ∗ ∩ L 
 p,q 
 (2),φ 
 (M, E). 
984: 2023/07/31(月)10:34 ID:jznoxopE(34/50) AAS
 Let Λ = Λg denote the adjoint of the exterior multiplication by ω. 
 Then Nakano’s formula 
 (2.2) ¯∂ 
 ¯∂ 
 ∗ + ¯∂ 
 ∗ ¯∂ − ∂h∂ 
 ∗ − ∂ 
 ∗ 
 ∂h = 
 √ 
 −1(ΘhΛ − ΛΘh) 
 holds if dω = 0. Here Θh also stands for the exterior multiplication by 
 Θh from the left hand side. Hence, for any open set Ω ⊂ M such that 
 dω|Ω = 0 and for any u ∈ C 
 n,q 
 0 
 (Ω, E), one has 
 (2.3) k 
 ¯∂uk 
 2 
 φ + k 
 ¯∂ 
 ∗uk 
 2 
 φ ≥ ( 
 √ 
 −1(Θh + IdE ⊗ ∂ 
 ¯∂φ)Λu, u)φ. 
 Here (u, w)φ stands for the inner product of u and v with respect to 
 (g, he−φ 
 ). 
985: 2023/07/31(月)10:35 ID:jznoxopE(35/50) AAS
 Here (u, w)φ stands for the inner product of u and v with respect to 
 (g, he−φ 
 ). The following direct consequence of (1.3) is important for 
 our purpose. 
986: 2023/07/31(月)10:36 ID:jznoxopE(36/50) AAS
 Proposition 2.1. Let M, E, g, h and φ be as above. Assume that there 
 exists a compact set K ⊂ M such that dωg = 0 holds on M \ K. Then 
 there exist a compact set K′ 
 containing K and a constant C such that 
 K′ and C do not depend on the choice of φ and 
 ( 
 √ 
 −1(Θh+IdE⊗∂ 
 ¯∂φ)Λu, u)φ ≤ C 
 ( 
 k 
 ¯∂uk 
 2 
 φ + k 
 ¯∂ 
 ∗uk 
 2 
 φ + 
 ∫ 
 K′ 
 e 
 −φ 
 |u| 
 2 
 g,hdVg 
 ) 
 holds for any u ∈ C 
 n,q 
 0 
 (M, E) (q ≥ 0). 
987: 2023/07/31(月)10:37 ID:jznoxopE(37/50) AAS
 From Proposition 1.1 one infers 
988: 2023/07/31(月)10:37 ID:jznoxopE(38/50) AAS
 Proposition 2.2. Let (M, E, g, h, φ, K) and (K′ 
 , C) be as above. Assume moreover that one can find a constant C0 > 0 such that C0(Θh + 
 IdE ⊗∂ 
 ¯∂φ)−IdE ⊗g ≥ 0 holds on M \K. Then there exists a constant 
 C 
 ′ depending only on C, K′ and C0 such that 
 kuk 
 2 
 φ ≤ C 
 ′ 
 ( 
 k 
 ¯∂uk 
 2 
 φ + k 
 ¯∂ 
 ∗uk 
 2 
 φ + 
 ∫ 
 K′ 
 e 
 −φ 
 |u| 
 2 
 g,hdVg 
 ) 
 holds for any u ∈ C 
 n,q 
 0 
 (M, E) (q ≥ 1). 
989: 2023/07/31(月)10:38 ID:jznoxopE(39/50) AAS
 By a theorem of Gaffney, the estimate in Proposition 1.2 implies the 
 following. 
 Proposition 2.3. In the situation of Proposition 1.2, 
 kuk 
 2 
 φ ≤ C 
 ′ 
 ( 
 k 
 ¯∂uk 
 2 
 φ + k 
 ¯∂ 
 ∗uk 
 2 
 φ + 
 ∫ 
 K′ 
 e 
 −φ 
 |u| 
 2 
 g,hdVg 
 ) 
 holds for all u ∈ L 
 n,q 
 (2),φ 
 (M, E) ∩ Dom¯∂ ∩ Dom¯∂ 
 ∗ 
 (q ≥ 1). 
990: 2023/07/31(月)10:38 ID:jznoxopE(40/50) AAS
 Recall that the following was proved in [H] by a basic argument of 
 functional analysis. 
991: 2023/07/31(月)10:39 ID:jznoxopE(41/50) AAS
 Theorem 2.2. (Theorem 1.1.2 and Theorem 1.1.3 in [H]) Let H1 and 
 H2 be Hilbert spaces and let T : H1 → H2 be a densely defined closed 
 operator. Let H3 be another Hilbert space and let S : H2 → H3 be a 
 densely defined closed operator such that ST = 0. Then a necessary 
 and sufficient condition for the ranges RT , RS of T, S both to be closed 
 is that there exists a constant C such that 
 (2.4) kgkH2 ≤ C(kT 
 ∗ 
 gkH1 +kSgkH3 
 ); g ∈ DT ∗ ∩DS, g⊥(NT ∗ ∩NS), 
 where DT ∗ and DS denote the domains of T 
 ∗ and S, respectively, and 
 NT ∗ = KerT 
 ∗ and NS = KerS. Moreover, if one can select a strongly 
 convergent subsequence from every sequence gk ∈ DT ∗ ∩DS with kgkkH2 
 bounded and T 
 ∗ 
 gk → 0 in H1, Sgk → 0 in H3, then NS/RT 
 ∼= NT ∗ ∩NS 
 holds and NT ∗ ∩ NS is finite dimensional. 
992: 2023/07/31(月)10:40 ID:jznoxopE(42/50) AAS
 Hence we obtain 
993: 2023/07/31(月)10:40 ID:jznoxopE(43/50) AAS
 Theorem 2.3. In the situation of Proposition 1.2, dimH 
 n,q 
 (2),φ 
 (M, E) < 
 ∞ and H n,q 
 φ 
 (M, E) ∼= H 
 n,q 
 (2),φ 
 (M, E) hold for all q ≥ 1. 
994: 2023/07/31(月)10:41 ID:jznoxopE(44/50) AAS
 It is an easy exercise to deduce from Theorem 1.3 that every strongly 
 pseudoconvex manifold is holomorphically convex (cf. [G] or [H]). We 
 are going to extend this application to the domains with weaker pseudoconvexity. 
995: 2023/07/31(月)10:41 ID:jznoxopE(45/50) AAS
 For any Hermitian metric g on M, a C 
 2 
 function ψ : M → R is called 
 g-psh (g-plurisubharmonic) if g + ∂ 
 ¯∂ψ ≥ 0 holds everywhere. 
 Then Theorem 1.3 can be restated as follows. 
996: 2023/07/31(月)10:42 ID:jznoxopE(46/50) AAS
 Theorem 2.4. Let (M, g) be an n-dimensional complete Hermitian 
 manifold and let (E, h) be a Hermitian holomorphic vector bundle over 
 M. Assume that there exists a compact set K ⊂ M such that 
 Θh − IdE ⊗ g ≥ 0 and dωg = 0 hold on M \ K. Then, for any g-psh 
 function φ on M and for any ε ∈ (0, 1), 
 dim H 
 n,q 
 (2),εφ 
 (M, E) < ∞ and H n,q 
 εφ (M, E) ∼= H 
 n,q 
 (2),εφ 
 (M, E) 
 for q ≥ 1 
997: 2023/07/31(月)10:43 ID:jznoxopE(47/50) AAS
 §2 Infinite dimensionality and bundle convexity theorems 
 By applying Theorem 1.4, we shall show at first the following. 
 Theorem 2.5. Let (M, E, g, h) be as in Theorem 1.4 and let xµ (µ = 
 1, 2, . . .) be a sequence of points in M without accumulation points. 
 Assume that there exists a (1 − ε)g-psh function φ on M \ {xµ} 
 ∞ 
 µ=1 for 
 some ε ∈ (0, 1) such that e 
 −φ 
 is not integrable on any neighborhood of 
 xµ for any µ. Then 
 dim H 
 n,0 
 (M, E) = ∞. 
998: 2023/07/31(月)10:43 ID:jznoxopE(48/50) AAS
 Proof. We put M′ = M \{xµ} 
 ∞ 
 µ=1 and let ψ be a bounded C 
 ∞ ε 
 2 
 g-psh 
 function on M′ 
 such that g 
 ′ 
 := g + ∂ 
 ¯∂ψ is a complete metric on M′ 
 . 
 Take sµ ∈ C 
 n,0 
 (M, E) (µ ∈ N) in such a way that |sµ(xν)|g,h = δµν and 
 ∫ 
 M′ e 
 −φ 
 | 
 ¯∂sµ| 
 2 
 g,hdVg < ∞. Since ∫ 
 M′ e 
 −φ−ψ 
 | 
 ¯∂sµ| 
 2 
 g 
 ′ 
 ,hdVg 
 ′ ≤ 
 ∫ 
 M′ e 
 −φ−ψ 
 | 
 ¯∂sµ| 
 2 
 g,hdVg 
 and dim H 
 n,1 
 (2),g′ 
 ,φ 
 (M′ 
 , E) < ∞ by Theorem 1.4, one can find a nontrivial finite linear combination of ¯∂sµ, say v = 
 ?cµ 
 ¯∂sµ, which is in the 
 range of L 
 n,0 
 (2),φ 
 (M′ 
 , E) 
 ∂¯ 
 −→ L 
 n,1 
 (2),g′ 
 ,φ 
 (M′ 
 , E). 
999: 2023/07/31(月)10:44 ID:jznoxopE(49/50) AAS
 Then take u ∈ L 
 n,0 
 (2),φ 
 (M′ 
 , E) 
 satisfying ¯∂u = v and put s = 
 ?cµsµ − u. Clearly s extends to a 
 nonzero element of Hn,0 
 (M, E) which is zero at xµ except for finitely 
 many µ. Hence, one can find mutually disjoint finite subsets Σν 6= 
 ϕ (ν = 1, 2, . . .) of N and nonzero holomorphic sections sν of E such 
 that sν(xµ) = 0 if µ /∈ Σν, so that dim Hn,0 
 (M, E) = ∞ 
1000: 2023/07/31(月)10:45 ID:jznoxopE(50/50) AAS
 This observation will be basic for the proofs of Theorems 0.4 and 
 0.5. 
1001(1): 1001  ID:Thread(1/2) AAS
 このスレッドは1000を超えました。 
 新しいスレッドを立ててください。  
life time: 187日 23時間 10分 2秒 
1002(1): 1002  ID:Thread(2/2) AAS
 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。 
 運営にご協力お願いいたします。 
─────────────────── 
 《プレミアム会員の主な特典》 
 ★ 5ちゃんねる専用ブラウザからの広告除去 
 ★ 5ちゃんねるの過去ログを取得 
 ★ 書き込み規制の緩和 
 ─────────────────── 
  
 会員登録には個人情報は一切必要ありません。 
 月300円から匿名でご購入いただけます。 
  
 ▼ プレミアム会員登録はこちら ▼ 
 外部リンク:premium.5ch.net 
  
 ▼ 浪人ログインはこちら ▼ 
 外部リンク[php]:login.5ch.net 
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 2.204s*